We compute the vacuum local modular Hamiltonian associated with a space ball region in the free scalar massless Quantum Field Theory. We give an explicit expression on the one particle Hilbert space in terms of the higher dimensional Legendre differential operator. The quadratic form of the massless modular Hamiltonian is expressed in terms of an integral of the energy density with the parabolic distribution. We then get the formula for the local entropy of a wave packet. This gives the vacuum relative entropy of a coherent state on the double cone von Neumann algebras associated with the free scalar QFT. Among other points, we provide the passivity characterisation of the modular Hamiltonian within the standard subspace setup.

Longo, R., Morsella, G. (2023). The massless modular Hamiltonian. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 400(2), 1181-1201 [10.1007/s00220-022-04617-1].

The massless modular Hamiltonian

Longo R.;Morsella G.
2023-01-01

Abstract

We compute the vacuum local modular Hamiltonian associated with a space ball region in the free scalar massless Quantum Field Theory. We give an explicit expression on the one particle Hilbert space in terms of the higher dimensional Legendre differential operator. The quadratic form of the massless modular Hamiltonian is expressed in terms of an integral of the energy density with the parabolic distribution. We then get the formula for the local entropy of a wave packet. This gives the vacuum relative entropy of a coherent state on the double cone von Neumann algebras associated with the free scalar QFT. Among other points, we provide the passivity characterisation of the modular Hamiltonian within the standard subspace setup.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Longo, R., Morsella, G. (2023). The massless modular Hamiltonian. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 400(2), 1181-1201 [10.1007/s00220-022-04617-1].
Longo, R; Morsella, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Longo-Morsella.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 391.07 kB
Formato Adobe PDF
391.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/322545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact