We describe an algebra of observables for a static patch in de Sitter space, with operators gravitationally dressed to the worldline of an observer. The algebra is a von Neumann algebra of Type II1. There is a natural notion of entropy for a state of such an algebra. There is a maximum entropy state, which corresponds to empty de Sitter space, and the entropy of any semiclassical state of the Type II1 algebras agrees, up to an additive constant independent of the state, with the expected generalized entropy S-gen = (A/4G(N)) + S-out. An arbitrary additive constant is present because of the renormalization that is involved in defining entropy for a Type II1 algebra.

Chandrasekaran, V., Longo, R., Penington, G., Witten, E. (2023). An algebra of observables for de Sitter space. JOURNAL OF HIGH ENERGY PHYSICS(2) [10.1007/JHEP02(2023)082].

An algebra of observables for de Sitter space

Longo R.;
2023-01-01

Abstract

We describe an algebra of observables for a static patch in de Sitter space, with operators gravitationally dressed to the worldline of an observer. The algebra is a von Neumann algebra of Type II1. There is a natural notion of entropy for a state of such an algebra. There is a maximum entropy state, which corresponds to empty de Sitter space, and the entropy of any semiclassical state of the Type II1 algebras agrees, up to an additive constant independent of the state, with the expected generalized entropy S-gen = (A/4G(N)) + S-out. An arbitrary additive constant is present because of the renormalization that is involved in defining entropy for a Type II1 algebra.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Cosmological models
de Sitter space
Chandrasekaran, V., Longo, R., Penington, G., Witten, E. (2023). An algebra of observables for de Sitter space. JOURNAL OF HIGH ENERGY PHYSICS(2) [10.1007/JHEP02(2023)082].
Chandrasekaran, V; Longo, R; Penington, G; Witten, E
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
ChanLongoPenWitten.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/322543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 107
  • ???jsp.display-item.citation.isi??? 101
social impact