We investigate the effect of metal cation substition on the excitonic structure and dynamics in a prototypical Ruddlesden-Popper metal halide. Through an in-depth spectroscopic and theoretical analysis, we identify the presence of multiple resonances in the optical spectra of a phenethyl ammonium tin iodide, a tin-based RPMH. Based on ab initio calculations, we assign these resonances to distinct exciton series that originate from the splitting of the conduction band due to spin-orbit coupling. While the splitting energy in the tin based system is low enough to enable the observation of the higher lying exciton in the visible-range spectrum of the material, the higher splitting energy in the lead counterpart prevents the emergence of such a feature. We elucidate the critical role played by the higher lying excitonic state in the ultrafast carrier thermalization dynamics.

Folpini, G., Palummo, M., Cortecchia, D., Moretti, L., Cerullo, G., Petrozza, A., et al. (2023). Plurality of excitons in Ruddlesden–Popper metal halides and the role of the B-site metal cation. MATERIALS ADVANCES, 4(7), 1720-1730 [10.1039/D2MA00136E].

Plurality of excitons in Ruddlesden–Popper metal halides and the role of the B-site metal cation

Maurizia Palummo
Formal Analysis
;
2023-01-01

Abstract

We investigate the effect of metal cation substition on the excitonic structure and dynamics in a prototypical Ruddlesden-Popper metal halide. Through an in-depth spectroscopic and theoretical analysis, we identify the presence of multiple resonances in the optical spectra of a phenethyl ammonium tin iodide, a tin-based RPMH. Based on ab initio calculations, we assign these resonances to distinct exciton series that originate from the splitting of the conduction band due to spin-orbit coupling. While the splitting energy in the tin based system is low enough to enable the observation of the higher lying exciton in the visible-range spectrum of the material, the higher splitting energy in the lead counterpart prevents the emergence of such a feature. We elucidate the critical role played by the higher lying excitonic state in the ultrafast carrier thermalization dynamics.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/03 - FISICA DELLA MATERIA
English
Folpini, G., Palummo, M., Cortecchia, D., Moretti, L., Cerullo, G., Petrozza, A., et al. (2023). Plurality of excitons in Ruddlesden–Popper metal halides and the role of the B-site metal cation. MATERIALS ADVANCES, 4(7), 1720-1730 [10.1039/D2MA00136E].
Folpini, G; Palummo, M; Cortecchia, D; Moretti, L; Cerullo, G; Petrozza, A; Giorgi, G; Ram Srimath Kandada, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/322506
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact