In our previous work, we equipped quiver Grassmannians for nilpotent representations of the equioriented cycle with an action of an algebraic torus. We show here that the equivariant cohomology ring is acted upon by a product of symmetric groups and we investigate this permutation action via GKM techniques. In the case of (type A) flag varieties, or Schubert varieties therein, we recover Tymoczko's results on permutation representations.

Lanini, M., Putz, A. (2023). Permutation actions on Quiver Grassmannians for the equioriented cycle via GKM-theory. JOURNAL OF ALGEBRAIC COMBINATORICS, 57(3), 915-956 [10.1007/s10801-022-01211-5].

Permutation actions on Quiver Grassmannians for the equioriented cycle via GKM-theory

Lanini M.;
2023-01-01

Abstract

In our previous work, we equipped quiver Grassmannians for nilpotent representations of the equioriented cycle with an action of an algebraic torus. We show here that the equivariant cohomology ring is acted upon by a product of symmetric groups and we investigate this permutation action via GKM techniques. In the case of (type A) flag varieties, or Schubert varieties therein, we recover Tymoczko's results on permutation representations.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
Permutation action
Cyclic Quiver Grassmannian
GKM-theory
Lanini, M., Putz, A. (2023). Permutation actions on Quiver Grassmannians for the equioriented cycle via GKM-theory. JOURNAL OF ALGEBRAIC COMBINATORICS, 57(3), 915-956 [10.1007/s10801-022-01211-5].
Lanini, M; Putz, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
JACO_Revision-3.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 635.12 kB
Formato Adobe PDF
635.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/322455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact