The mechanical response of additively-manufactured hollow truss lattices is experimentally investigated under quasi-static compression testing. Exploiting the recent developments in the Fusing Deposition Modelling (FDM) technique, two families of lattices have been fabricated, obtained as tessellation in space of octet-truss and diamond unit cells. Four specimens for each family of lattices have been designed with prescribed relative density, selecting different inner-to-outer radius ratios r/R of their hollow struts. Compression experiments prove that mechanical properties and failure mechanisms of hollow truss lattices are significantly dependent on the r/R ratio. In particular, a shift from quasi-brittle to ductile mechanical response at increasing r/R values has been revealed for the octet-truss lattice, leading to a stable collapse mechanism and increased energy absorption capacity. On the other hand, a more compliant behaviour has been observed in the diamond lattice response, with a monotonic improvement of mechanical properties as a function of the r/R ratio. Such results substantiate the potentialities of additively-manufactured hollow lattice structures as an attractive solution when lightweight, resistant and efficient energy absorption materials are required. Graphic Abstract: [Figure not available: see fulltext.]
Intrigila, C., Nodargi, N.a., Bisegna, P. (2022). The compressive response of additively-manufactured hollow truss lattices: an experimental investigation. INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY, 120(5-6), 3529-3541 [10.1007/s00170-022-08716-0].
The compressive response of additively-manufactured hollow truss lattices: an experimental investigation
Nodargi N. A.Membro del Collaboration Group
;Bisegna P.Membro del Collaboration Group
2022-01-01
Abstract
The mechanical response of additively-manufactured hollow truss lattices is experimentally investigated under quasi-static compression testing. Exploiting the recent developments in the Fusing Deposition Modelling (FDM) technique, two families of lattices have been fabricated, obtained as tessellation in space of octet-truss and diamond unit cells. Four specimens for each family of lattices have been designed with prescribed relative density, selecting different inner-to-outer radius ratios r/R of their hollow struts. Compression experiments prove that mechanical properties and failure mechanisms of hollow truss lattices are significantly dependent on the r/R ratio. In particular, a shift from quasi-brittle to ductile mechanical response at increasing r/R values has been revealed for the octet-truss lattice, leading to a stable collapse mechanism and increased energy absorption capacity. On the other hand, a more compliant behaviour has been observed in the diamond lattice response, with a monotonic improvement of mechanical properties as a function of the r/R ratio. Such results substantiate the potentialities of additively-manufactured hollow lattice structures as an attractive solution when lightweight, resistant and efficient energy absorption materials are required. Graphic Abstract: [Figure not available: see fulltext.]File | Dimensione | Formato | |
---|---|---|---|
Metamaterials_JAMT_2022.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.29 MB
Formato
Adobe PDF
|
2.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.