Porphyrinoids are considered perfect candidates for their incorporation into electron donor–acceptor (D–A) arrays due to their remarkable optoelectronic properties and low reorganization energies. For the first time, a series of subphthalocyanine (SubPc) and corrole (Cor) were covalently connected through a short-range linkage. SubPc axial substitution strategies were employed, which allowed the synthesis of the target molecules in decent yields. In this context, a qualitative synthetic approach was performed to reverse the expected direction of the different electronic events. Consequently, in-depth absorption, fluorescence, and electrochemical assays enabled the study of electronic and photophysical properties. Charge separation was observed in cases of electron-donating Cors, whereas a quantitative energy transfer from the Cor to the SubPc was detected in the case of electron accepting Cors.
Marinas, V., Platzer, B., Labella, J., Caroleo, F., Nardis, S., Paolesse, R., et al. (2022). Controlling electronic events through rational structural design in subphthalocyanine–corrole dyads: synthesis, characterization, and photophysical properties. CHEMISTRY-A EUROPEAN JOURNAL, 28(60) [10.1002/chem.202201552].
Controlling electronic events through rational structural design in subphthalocyanine–corrole dyads: synthesis, characterization, and photophysical properties
Caroleo F.;Nardis S.
;Paolesse R.
;
2022-01-01
Abstract
Porphyrinoids are considered perfect candidates for their incorporation into electron donor–acceptor (D–A) arrays due to their remarkable optoelectronic properties and low reorganization energies. For the first time, a series of subphthalocyanine (SubPc) and corrole (Cor) were covalently connected through a short-range linkage. SubPc axial substitution strategies were employed, which allowed the synthesis of the target molecules in decent yields. In this context, a qualitative synthetic approach was performed to reverse the expected direction of the different electronic events. Consequently, in-depth absorption, fluorescence, and electrochemical assays enabled the study of electronic and photophysical properties. Charge separation was observed in cases of electron-donating Cors, whereas a quantitative energy transfer from the Cor to the SubPc was detected in the case of electron accepting Cors.File | Dimensione | Formato | |
---|---|---|---|
Chemistry A European J - 2022.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.18 MB
Formato
Adobe PDF
|
4.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.