Neutrinos exist in one of three types or 'flavours'-electron, muon and tau neutrinos-and oscillate from one flavour to another when propagating through space. This phenomena is one of the few that cannot be described using the standard model of particle physics (reviewed in ref. (1)), and so its experimental study can provide new insight into the nature of our Universe (reviewed in ref. (2)). Neutrinos oscillate as a function of their propagation distance (L) divided by their energy (E). Therefore, experiments extract oscillation parameters by measuring their energy distribution at different locations. As accelerator-based oscillation experiments cannot directly measure E, the interpretation of these experiments relies heavily on phenomenological models of neutrino-nucleus interactions to infer E. Here we exploit the similarity of electron-nucleus and neutrino-nucleus interactions, and use electron scattering data with known beam energies to test energy reconstruction methods and interaction models. We find that even in simple interactions where no pions are detected, only a small fraction of events reconstruct to the correct incident energy. More importantly, widely used interaction models reproduce the reconstructed energy distribution only qualitatively and the quality of the reproduction varies strongly with beam energy. This shows both the need and the pathway to improve current models to meet the requirements of next-generation, high-precision experiments such as Hyper-Kamiokande (Japan)(3) and DUNE (USA)(4).Electron scattering measurements are shown to reproduce only qualitatively state-of-the-art lepton-nucleus energy reconstruction models, indicating that improvements to these particle-interaction models are required to ensure the accuracy of future high-precision neutrino oscillation experiments.

Khachatryan, M., Papadopoulou, A., Ashkenazi, A., Hauenstein, F., Nambrath, A., Hrnjic, A., et al. (2021). Electron-beam energy reconstruction for neutrino oscillation measurements. NATURE, 599(7886), 565-570 [10.1038/s41586-021-04046-5].

Electron-beam energy reconstruction for neutrino oscillation measurements

D’Angelo, Annalisa
Membro del Collaboration Group
;
Lanza, L
Membro del Collaboration Group
;
2021-11-01

Abstract

Neutrinos exist in one of three types or 'flavours'-electron, muon and tau neutrinos-and oscillate from one flavour to another when propagating through space. This phenomena is one of the few that cannot be described using the standard model of particle physics (reviewed in ref. (1)), and so its experimental study can provide new insight into the nature of our Universe (reviewed in ref. (2)). Neutrinos oscillate as a function of their propagation distance (L) divided by their energy (E). Therefore, experiments extract oscillation parameters by measuring their energy distribution at different locations. As accelerator-based oscillation experiments cannot directly measure E, the interpretation of these experiments relies heavily on phenomenological models of neutrino-nucleus interactions to infer E. Here we exploit the similarity of electron-nucleus and neutrino-nucleus interactions, and use electron scattering data with known beam energies to test energy reconstruction methods and interaction models. We find that even in simple interactions where no pions are detected, only a small fraction of events reconstruct to the correct incident energy. More importantly, widely used interaction models reproduce the reconstructed energy distribution only qualitatively and the quality of the reproduction varies strongly with beam energy. This shows both the need and the pathway to improve current models to meet the requirements of next-generation, high-precision experiments such as Hyper-Kamiokande (Japan)(3) and DUNE (USA)(4).Electron scattering measurements are shown to reproduce only qualitatively state-of-the-art lepton-nucleus energy reconstruction models, indicating that improvements to these particle-interaction models are required to ensure the accuracy of future high-precision neutrino oscillation experiments.
nov-2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/04 - FISICA NUCLEARE E SUBNUCLEARE
English
Con Impact Factor ISI
Khachatryan, M., Papadopoulou, A., Ashkenazi, A., Hauenstein, F., Nambrath, A., Hrnjic, A., et al. (2021). Electron-beam energy reconstruction for neutrino oscillation measurements. NATURE, 599(7886), 565-570 [10.1038/s41586-021-04046-5].
Khachatryan, M; Papadopoulou, A; Ashkenazi, A; Hauenstein, F; Nambrath, A; Hrnjic, A; Weinstein, Lb; Hen, O; Piasetzky, E; Betancourt, M; Dytman, S; M...espandi
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/319237
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 32
social impact