We present the fabrication of highly efficient large-area carbon-based perovskite solar cells (C-PSCs) using CsX (X = Cl, Br, and I)-modified mesoporous (mp) TiO2 beads of 40 nm size as an electron transport material. Here, triple-layered scaffolds made of cesium halide-modified TiO2 exhibit efficient charge extraction as confirmed by enhanced photoluminescence quenching and inhibit the UV-activated degradation processes of perovskite, leading to an enhanced operational stability. Among the three cesium halide modifications, devices containing CsBr-modified TiO2 showed the highest short-circuit current density, yielding a photoconversion efficiency (PCE) of 12.59% of the device, with 0.7 cm(2) active area and 11.55% for a large-area module (70 cm(2)). These devices are stable in an ambient atmosphere (25 degrees C, 65-70% RH) over 2700 h as well as at a high temperature (85 degrees C) over 750 h with virtually no hysteresis.

Keremane, K.s., Prathapani, S., Jia Haur, L., Bruno, A., Priyadarshi, A., Vasudeva Adhikari, A., et al. (2021). Improving the performance of carbon-based perovskite solar modules (70 cm2) by incorporating cesium halide in mesoporous TiO 2. ACS APPLIED ENERGY MATERIALS, 4(1), 249-258 [10.1021/acsaem.0c02213].

Improving the performance of carbon-based perovskite solar modules (70 cm2) by incorporating cesium halide in mesoporous TiO 2

Annalisa Bruno;
2021-01-01

Abstract

We present the fabrication of highly efficient large-area carbon-based perovskite solar cells (C-PSCs) using CsX (X = Cl, Br, and I)-modified mesoporous (mp) TiO2 beads of 40 nm size as an electron transport material. Here, triple-layered scaffolds made of cesium halide-modified TiO2 exhibit efficient charge extraction as confirmed by enhanced photoluminescence quenching and inhibit the UV-activated degradation processes of perovskite, leading to an enhanced operational stability. Among the three cesium halide modifications, devices containing CsBr-modified TiO2 showed the highest short-circuit current density, yielding a photoconversion efficiency (PCE) of 12.59% of the device, with 0.7 cm(2) active area and 11.55% for a large-area module (70 cm(2)). These devices are stable in an ambient atmosphere (25 degrees C, 65-70% RH) over 2700 h as well as at a high temperature (85 degrees C) over 750 h with virtually no hysteresis.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/03 - FISICA DELLA MATERIA
English
improved stability
Keremane, K.s., Prathapani, S., Jia Haur, L., Bruno, A., Priyadarshi, A., Vasudeva Adhikari, A., et al. (2021). Improving the performance of carbon-based perovskite solar modules (70 cm2) by incorporating cesium halide in mesoporous TiO 2. ACS APPLIED ENERGY MATERIALS, 4(1), 249-258 [10.1021/acsaem.0c02213].
Keremane, Ks; Prathapani, S; Jia Haur, L; Bruno, A; Priyadarshi, A; Vasudeva Adhikari, A; Mhaisalkar, Sg
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/318097
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact