Let $V\subset \bold P^5$ be a reduced and irreducible threefold of degree $s$, complete intersection on a smooth hypersurface of degree $t$, with $s>t^2-t$. In this paper we prove that if the singular locus of $V$ consists of $\delta < 3s/8t$ ordinary double points, then any projective surface contained in $V$ is a complete intersection on $V$. In particular $V$ is ${\bold Q}$-factorial.

Ciliberto, C., DI GENNARO, V. (2004). Factoriality of certain threefolds complete intersection in ${bold P^5}$ with ordinary double points. COMMUNICATIONS IN ALGEBRA, 32, 2705-2710.

Factoriality of certain threefolds complete intersection in ${bold P^5}$ with ordinary double points.

CILIBERTO, CIRO;DI GENNARO, VINCENZO
2004

Abstract

Let $V\subset \bold P^5$ be a reduced and irreducible threefold of degree $s$, complete intersection on a smooth hypersurface of degree $t$, with $s>t^2-t$. In this paper we prove that if the singular locus of $V$ consists of $\delta < 3s/8t$ ordinary double points, then any projective surface contained in $V$ is a complete intersection on $V$. In particular $V$ is ${\bold Q}$-factorial.
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/03 - Geometria
English
Con Impact Factor ISI
Projective complete intersection, ordinary double point, factoriality, Castelnuovo-Halphen Theory, Hodge Theory, Lefschetz Theorems.
http://www.informaworld.com/smpp/content~db=all?content=10.1081/AGB-120037410
Ciliberto, C., DI GENNARO, V. (2004). Factoriality of certain threefolds complete intersection in ${bold P^5}$ with ordinary double points. COMMUNICATIONS IN ALGEBRA, 32, 2705-2710.
Ciliberto, C; DI GENNARO, V
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/31788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact