Let $V\subset \bold P^4$ be a reduced and irreducible hypersurface of degree $k\geq 3$, whose singular locus consists of $\delta$ ordinary double points. In this paper we prove that if $\delta < k/2$, or the nodes of $V$ are set-theoretic intersection of hypersurfaces of degree $n<k/2$ and $\delta < (k-2n)(k-1)^2/k$, then any projective surface contained in $V$ is a complete intersection on $V$. In particular $V$ is ${\bold Q}$-factorial. We give more precise results for {\it {smooth}} surfaces contained in $V$.

Ciliberto, C., DI GENNARO, V. (2004). Factoriality of certain hypersurfaces of ${bold P^4}$ with ordinary double points.. In V. Popov (a cura di), Algebraic Transformation Groups and Algebraic Varieties (pp. 1-7). Springer.

Factoriality of certain hypersurfaces of ${bold P^4}$ with ordinary double points.

CILIBERTO, CIRO;DI GENNARO, VINCENZO
2004

Abstract

Let $V\subset \bold P^4$ be a reduced and irreducible hypersurface of degree $k\geq 3$, whose singular locus consists of $\delta$ ordinary double points. In this paper we prove that if $\delta < k/2$, or the nodes of $V$ are set-theoretic intersection of hypersurfaces of degree $n
Settore MAT/03 - Geometria
English
Rilevanza internazionale
Capitolo o saggio
Projective hypersurface, ordinary double point, complete intersection, space curve, Noether-Halphen theory, Weil divisor class group.
http://www.springer.com/mathematics/algebra/book/978-3-540-20838-9
Ciliberto, C., DI GENNARO, V. (2004). Factoriality of certain hypersurfaces of ${bold P^4}$ with ordinary double points.. In V. Popov (a cura di), Algebraic Transformation Groups and Algebraic Varieties (pp. 1-7). Springer.
Ciliberto, C; DI GENNARO, V
Contributo in libro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/31715
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact