Online users tend to hide their real identities by adopting different names on the Internet. On Facebook or LinkedIn, for example, people usually appear with their real names. On other standard websites, such as forums, people often use nicknames to protect their real identities. Aliases are used when users are trying to protect their anonymity. This can be a challenge to law enforcement trying to identify users who often change nicknames. In unmonitored contexts, such as the dark web, users expect strong identity protection. Thus, without censorship, these users may create parallel social networks where they can engage in potentially malicious activities that could pose security threats. In this paper, we propose a solution to the need to recognize people who anonymize themselves behind nicknames—the authorship attribution (AA) task—in the challenging context of the dark web: specifically, an English-language Islamic forum dedicated to discussions of issues related to the Islamic world and Islam, in which members of radical Islamic groups are present. We provide extensive analysis by testing models based on transformers, styles, and syntactic features. Downstream of the experiments, we show how models that analyze syntax and style perform better than pre-trained universal language models.

Ranaldi, L., Ranaldi, F., Fallucchi, F., Zanzotto, F.m. (2022). Shedding Light on the Dark Web: Authorship Attribution in Radical Forums. INFORMATION, 13(9), 435 [10.3390/info13090435].

Shedding Light on the Dark Web: Authorship Attribution in Radical Forums

Zanzotto F. M.
2022-01-01

Abstract

Online users tend to hide their real identities by adopting different names on the Internet. On Facebook or LinkedIn, for example, people usually appear with their real names. On other standard websites, such as forums, people often use nicknames to protect their real identities. Aliases are used when users are trying to protect their anonymity. This can be a challenge to law enforcement trying to identify users who often change nicknames. In unmonitored contexts, such as the dark web, users expect strong identity protection. Thus, without censorship, these users may create parallel social networks where they can engage in potentially malicious activities that could pose security threats. In this paper, we propose a solution to the need to recognize people who anonymize themselves behind nicknames—the authorship attribution (AA) task—in the challenging context of the dark web: specifically, an English-language Islamic forum dedicated to discussions of issues related to the Islamic world and Islam, in which members of radical Islamic groups are present. We provide extensive analysis by testing models based on transformers, styles, and syntactic features. Downstream of the experiments, we show how models that analyze syntax and style perform better than pre-trained universal language models.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore INF/01 - INFORMATICA
Settore ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
English
dark web
deep learning
extremism
jihadist forum
machine learning
natural language processing
radicalization
Ranaldi, L., Ranaldi, F., Fallucchi, F., Zanzotto, F.m. (2022). Shedding Light on the Dark Web: Authorship Attribution in Radical Forums. INFORMATION, 13(9), 435 [10.3390/info13090435].
Ranaldi, L; Ranaldi, F; Fallucchi, F; Zanzotto, Fm
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/316977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 3
social impact