D-type cyclins are central regulators of the cell division cycle and are among the most frequently deregulated therapeutic targets in human cancer(1), but the mechanisms that regulate their turnover are still being debated(2,3). Here, by combining biochemical and genetics studies in somatic cells, we identify CRL4(AMBRA1) (also known as CRL4(DCAF3)) as the ubiquitin ligase that targets all three D-type cyclins for degradation. During development, loss of Ambra1 induces the accumulation of D-type cyclins and retinoblastoma (RB) hyperphosphorylation and hyperproliferation, and results in defects of the nervous system that are reduced by treating pregnant mice with the FDA-approved CDK4 and CDK6 (CDK4/6) inhibitor abemaciclib. Moreover, AMBRA1 acts as a tumour suppressor in mouse models and low AMBRA1 mRNA levels are predictive of poor survival in cancer patients. Cancer hotspot mutations in D-type cyclins abrogate their binding to AMBRA1 and induce their stabilization. Finally, a whole-genome, CRISPR-Cas9 screen identified AMBRA1 as a regulator of the response to CDK4/6 inhibition. Loss of AMBRA1 reduces sensitivity to CDK4/6 inhibitors by promoting the formation of complexes of D-type cyclins with CDK2. Collectively, our results reveal the molecular mechanism that controls the stability of D-type cyclins during cell-cycle progression, in development and in human cancer, and implicate AMBRA1 as a critical regulator of the RB pathway.

Simoneschi, D., Rona, G., Zhou, N., Jeong, Y.-., Jiang, S., Milletti, G., et al. (2021). CRL4AMBRA1 is a master regulator of D-type cyclins. NATURE, 592(7856), 789-793 [10.1038/s41586-021-03445-y].

CRL4AMBRA1 is a master regulator of D-type cyclins

Cianfanelli V.;Cecconi F.;
2021-01-01

Abstract

D-type cyclins are central regulators of the cell division cycle and are among the most frequently deregulated therapeutic targets in human cancer(1), but the mechanisms that regulate their turnover are still being debated(2,3). Here, by combining biochemical and genetics studies in somatic cells, we identify CRL4(AMBRA1) (also known as CRL4(DCAF3)) as the ubiquitin ligase that targets all three D-type cyclins for degradation. During development, loss of Ambra1 induces the accumulation of D-type cyclins and retinoblastoma (RB) hyperphosphorylation and hyperproliferation, and results in defects of the nervous system that are reduced by treating pregnant mice with the FDA-approved CDK4 and CDK6 (CDK4/6) inhibitor abemaciclib. Moreover, AMBRA1 acts as a tumour suppressor in mouse models and low AMBRA1 mRNA levels are predictive of poor survival in cancer patients. Cancer hotspot mutations in D-type cyclins abrogate their binding to AMBRA1 and induce their stabilization. Finally, a whole-genome, CRISPR-Cas9 screen identified AMBRA1 as a regulator of the response to CDK4/6 inhibition. Loss of AMBRA1 reduces sensitivity to CDK4/6 inhibitors by promoting the formation of complexes of D-type cyclins with CDK2. Collectively, our results reveal the molecular mechanism that controls the stability of D-type cyclins during cell-cycle progression, in development and in human cancer, and implicate AMBRA1 as a critical regulator of the RB pathway.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/06 - ANATOMIA COMPARATA E CITOLOGIA
English
Adaptor Proteins, Signal Transducing
Animals
CRISPR-Cas Systems
Cyclin D1
Cyclin D2
Cyclin D3
Cyclin-Dependent Kinase 2
Cyclin-Dependent Kinase 4
Cyclin-Dependent Kinase 6
Female
Gene Knockout Techniques
Genes, Tumor Suppressor
HCT116 Cells
HEK293 Cells
Humans
Male
Mice
Neoplasms
Ubiquitin
Cell Division
Simoneschi, D., Rona, G., Zhou, N., Jeong, Y.-., Jiang, S., Milletti, G., et al. (2021). CRL4AMBRA1 is a master regulator of D-type cyclins. NATURE, 592(7856), 789-793 [10.1038/s41586-021-03445-y].
Simoneschi, D; Rona, G; Zhou, N; Jeong, Y-; Jiang, S; Milletti, G; Arbini, Aa; O'Sullivan, A; Wang, Aa; Nithikasem, S; Keegan, S; Siu, Y; Cianfanelli,...espandi
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/316760
Citazioni
  • ???jsp.display-item.citation.pmc??? 58
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 81
social impact