We perform direct numerical simulations of wall sheared Rayleigh-Benard convection for Rayleigh numbers up to , Prandtl number unity and wall shear Reynolds numbers up to . Using the Monin-Obukhov length we observe the presence of three different flow states, a buoyancy dominated regime (; with the thermal boundary layer thickness), a transitional regime (; with the height of the domain) and a shear dominated regime (). In the buoyancy dominated regime, the flow dynamics is similar to that of turbulent thermal convection. The transitional regime is characterized by rolls that are increasingly elongated with increasing shear. The flow in the shear dominated regime consists of very large-scale meandering rolls, similar to the ones found in conventional Couette flow. As a consequence of these different flow regimes, for fixed and with increasing shear, the heat transfer first decreases, due to the breakup of the thermal rolls, and then increases at the beginning of the shear dominated regime. In the shear dominated regime the Nusselt number effectively scales as with , while we find in the buoyancy dominated regime. In the transitional regime, the effective scaling exponent is , but the temperature and velocity profiles in this regime are not logarithmic yet, thus indicating transient dynamics and not the ultimate regime of thermal convection.

Blass, A., Zhu, X., Verzicco, R., Lohse, D., Stevens, R. (2020). Flow organization and heat transfer in turbulent wall sheared thermal convection. JOURNAL OF FLUID MECHANICS, 897(A22) [10.1017/jfm.2020.378].

Flow organization and heat transfer in turbulent wall sheared thermal convection

Verzicco, Roberto;
2020-08-25

Abstract

We perform direct numerical simulations of wall sheared Rayleigh-Benard convection for Rayleigh numbers up to , Prandtl number unity and wall shear Reynolds numbers up to . Using the Monin-Obukhov length we observe the presence of three different flow states, a buoyancy dominated regime (; with the thermal boundary layer thickness), a transitional regime (; with the height of the domain) and a shear dominated regime (). In the buoyancy dominated regime, the flow dynamics is similar to that of turbulent thermal convection. The transitional regime is characterized by rolls that are increasingly elongated with increasing shear. The flow in the shear dominated regime consists of very large-scale meandering rolls, similar to the ones found in conventional Couette flow. As a consequence of these different flow regimes, for fixed and with increasing shear, the heat transfer first decreases, due to the breakup of the thermal rolls, and then increases at the beginning of the shear dominated regime. In the shear dominated regime the Nusselt number effectively scales as with , while we find in the buoyancy dominated regime. In the transitional regime, the effective scaling exponent is , but the temperature and velocity profiles in this regime are not logarithmic yet, thus indicating transient dynamics and not the ultimate regime of thermal convection.
25-ago-2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/06 - FLUIDODINAMICA
English
Couette flow
Rayleigh–Bénard convection
heat transfer
turbulent convection
Blass, A., Zhu, X., Verzicco, R., Lohse, D., Stevens, R. (2020). Flow organization and heat transfer in turbulent wall sheared thermal convection. JOURNAL OF FLUID MECHANICS, 897(A22) [10.1017/jfm.2020.378].
Blass, A; Zhu, X; Verzicco, R; Lohse, D; Stevens, Rjam
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/315705
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 36
social impact