It is commonly accepted that the breakup criteria of drops or bubbles in turbulence is governed by surface tension and inertia. However, also buoyancy can play an important role at breakup. In order to better understand this role, here we numerically study two-dimensional Rayleigh-Benard convection for two immiscible fluid layers, in order to identify the effects of buoyancy on interface breakup. We explore the parameter space spanned by the Weber number (the ratio of inertia to surface tension) and the density ratio between the two fluids , at fixed Rayleigh number and Prandtl number . At low , the interface undulates due to plumes. When is larger than a critical value, the interface eventually breaks up. Depending on , two breakup types are observed. The first type occurs at small (e.g. air-water systems) when local filament thicknesses exceed the Hinze length scale. The second, strikingly different, type occurs at large with roughly (e.g. oil-water systems): the layers undergo a periodic overturning caused by buoyancy overwhelming surface tension. For both types, the breakup criteria can be derived from force balance arguments and show good agreement with the numerical results.

Liu, H., Leong Chong, K., Wang, Q., Shen Ng, C., Verzicco, R., Lohse, D. (2021). Two-layer thermally driven turbulence: mechanisms for interface breakup. JOURNAL OF FLUID MECHANICS, 913 [10.1017/jfm.2021.14].

Two-layer thermally driven turbulence: mechanisms for interface breakup

Roberto Verzicco;
2021-01-01

Abstract

It is commonly accepted that the breakup criteria of drops or bubbles in turbulence is governed by surface tension and inertia. However, also buoyancy can play an important role at breakup. In order to better understand this role, here we numerically study two-dimensional Rayleigh-Benard convection for two immiscible fluid layers, in order to identify the effects of buoyancy on interface breakup. We explore the parameter space spanned by the Weber number (the ratio of inertia to surface tension) and the density ratio between the two fluids , at fixed Rayleigh number and Prandtl number . At low , the interface undulates due to plumes. When is larger than a critical value, the interface eventually breaks up. Depending on , two breakup types are observed. The first type occurs at small (e.g. air-water systems) when local filament thicknesses exceed the Hinze length scale. The second, strikingly different, type occurs at large with roughly (e.g. oil-water systems): the layers undergo a periodic overturning caused by buoyancy overwhelming surface tension. For both types, the breakup criteria can be derived from force balance arguments and show good agreement with the numerical results.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/06 - FLUIDODINAMICA
English
Benard convection
breakup
coalescence
turbulence simulation
Liu, H., Leong Chong, K., Wang, Q., Shen Ng, C., Verzicco, R., Lohse, D. (2021). Two-layer thermally driven turbulence: mechanisms for interface breakup. JOURNAL OF FLUID MECHANICS, 913 [10.1017/jfm.2021.14].
Liu, H; Leong Chong, K; Wang, Q; Shen Ng, C; Verzicco, R; Lohse, D
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/315694
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact