Many environmental flows arise due to natural convection at a vertical surface, from flows in buildings to dissolving ice faces at marine-terminating glaciers. We use three-dimensional direct numerical simulations of a vertical channel with differentially heated walls to investigate such convective, turbulent boundary layers. Through the implementation of a multiple-resolution technique, we are able to perform simulations at a wide range of Prandtl numbers . This allows us to distinguish the parameter dependences of the horizontal heat flux and the boundary layer widths in terms of the Rayleigh number and Prandtl number . For the considered parameter range , , we find the flow to be consistent with a 'buoyancy-controlled' regime where the heat flux is independent of the wall separation. For given , the heat flux is found to scale linearly with the friction velocity . Finally, we discuss the implications of our results for the parameterisation of heat and salt fluxes at vertical ice-ocean interfaces.

Howland, C., Ng, C., Verzicco, R., Lohse, D. (2021). Boundary layers in turbulent vertical convection at high Prandtl number. JOURNAL OF FLUID MECHANICS, 930 [10.1017/jfm.2021.952].

Boundary layers in turbulent vertical convection at high Prandtl number

Verzicco, R;
2021-01-01

Abstract

Many environmental flows arise due to natural convection at a vertical surface, from flows in buildings to dissolving ice faces at marine-terminating glaciers. We use three-dimensional direct numerical simulations of a vertical channel with differentially heated walls to investigate such convective, turbulent boundary layers. Through the implementation of a multiple-resolution technique, we are able to perform simulations at a wide range of Prandtl numbers . This allows us to distinguish the parameter dependences of the horizontal heat flux and the boundary layer widths in terms of the Rayleigh number and Prandtl number . For the considered parameter range , , we find the flow to be consistent with a 'buoyancy-controlled' regime where the heat flux is independent of the wall separation. For given , the heat flux is found to scale linearly with the friction velocity . Finally, we discuss the implications of our results for the parameterisation of heat and salt fluxes at vertical ice-ocean interfaces.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/06 - FLUIDODINAMICA
English
turbulent convection
turbulent boundary layers
buoyant boundary layers
Howland, C., Ng, C., Verzicco, R., Lohse, D. (2021). Boundary layers in turbulent vertical convection at high Prandtl number. JOURNAL OF FLUID MECHANICS, 930 [10.1017/jfm.2021.952].
Howland, C; Ng, C; Verzicco, R; Lohse, D
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/315680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact