Indoor ventilation is essential for a healthy and comfortable living environment. A key issue is to discharge anthropogenic air contamination such as C-2 gas or, of potentially more direct consequence, airborne respiratory droplets. Here, by employing direct numerical simulations, we study mechanical displacement ventilation with a wide range of ventilation rates Q from 0.01 to 0.1 m(3) s(-1) person(-1). For this ventilation scheme, a cool lower zone is established beneath a warm upper zone with interface height h, which depends on Q. For weak ventilation, we find the scaling relation h similar to Q(3/5), as suggested by Hunt & Linden (Build. Environ., vol. 34,1999, pp. 707-720). Also, the CO2 concentration decreases with Q within this regime. However, for too strong ventilation, the interface height h becomes insensitive to Q, and the ambient averaged CO2 concentration decreases towards the ambient value. At these values of Q, the concentrations of pollutants are very low and so further dilution has little effect. We suggest that such scenarios arise when the vertical kinetic energy associated with the ventilation flow is significant compared with the potential energy of the thermal stratification.

Yang, R., Shen Ng, C., Leong Chong, K., Verzicco, R., Lohse, D. (2021). Do increased flow rates in displacement ventilation always lead to better results?. JOURNAL OF FLUID MECHANICS, 932 [10.1017/jfm.2021.949].

Do increased flow rates in displacement ventilation always lead to better results?

Roberto Verzicco;
2021-01-01

Abstract

Indoor ventilation is essential for a healthy and comfortable living environment. A key issue is to discharge anthropogenic air contamination such as C-2 gas or, of potentially more direct consequence, airborne respiratory droplets. Here, by employing direct numerical simulations, we study mechanical displacement ventilation with a wide range of ventilation rates Q from 0.01 to 0.1 m(3) s(-1) person(-1). For this ventilation scheme, a cool lower zone is established beneath a warm upper zone with interface height h, which depends on Q. For weak ventilation, we find the scaling relation h similar to Q(3/5), as suggested by Hunt & Linden (Build. Environ., vol. 34,1999, pp. 707-720). Also, the CO2 concentration decreases with Q within this regime. However, for too strong ventilation, the interface height h becomes insensitive to Q, and the ambient averaged CO2 concentration decreases towards the ambient value. At these values of Q, the concentrations of pollutants are very low and so further dilution has little effect. We suggest that such scenarios arise when the vertical kinetic energy associated with the ventilation flow is significant compared with the potential energy of the thermal stratification.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/06 - FLUIDODINAMICA
English
plumes/thermals
turbulent mixing
turbulent convection
Yang, R., Shen Ng, C., Leong Chong, K., Verzicco, R., Lohse, D. (2021). Do increased flow rates in displacement ventilation always lead to better results?. JOURNAL OF FLUID MECHANICS, 932 [10.1017/jfm.2021.949].
Yang, R; Shen Ng, C; Leong Chong, K; Verzicco, R; Lohse, D
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/315677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact