We apply the theory of M-regularity developed by the authors [Regularity on abelian varieties, I, J. Amer. Math. Soc. 16 (2003), 285-302] to the study of linear series given by multiples of ample line bundles on abelian varieties. We define an invariant of a line bundle, called M-regularity index, which governs the higher order properties and (partly conjecturally) the defining equations of such embeddings. We prove a general result on the behavior of the defining equations and higher syzygies in embeddings given by multiples of ample bundles whose base locus has no fixed components, extending a conjecture of Lazarsfeld [proved in Syzygies of abelian varieties, J. Amer. Math. Soc. 13 (2000), 651-664]. This approach also unifies essentially all the previously known results in this area, and is based on Fourier-Mukai techniques rather than representations of theta groups.
Pareschi, G., Popa, M. (2004). Regularity on abelian vaneties II: Basic results on linear series and defining equations. JOURNAL OF ALGEBRAIC GEOMETRY, 13(1), 167-193 [10.1090/S1056-3911-03-00345-X].
Regularity on abelian vaneties II: Basic results on linear series and defining equations
PARESCHI, GIUSEPPE;
2004-01-01
Abstract
We apply the theory of M-regularity developed by the authors [Regularity on abelian varieties, I, J. Amer. Math. Soc. 16 (2003), 285-302] to the study of linear series given by multiples of ample line bundles on abelian varieties. We define an invariant of a line bundle, called M-regularity index, which governs the higher order properties and (partly conjecturally) the defining equations of such embeddings. We prove a general result on the behavior of the defining equations and higher syzygies in embeddings given by multiples of ample bundles whose base locus has no fixed components, extending a conjecture of Lazarsfeld [proved in Syzygies of abelian varieties, J. Amer. Math. Soc. 13 (2000), 651-664]. This approach also unifies essentially all the previously known results in this area, and is based on Fourier-Mukai techniques rather than representations of theta groups.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.