The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.

Mailloux, J., Abid, N., Abraham, K., Abreu, P., Adabonyan, O., Adrich, P., et al. (2022). Overview of JET results for optimising ITER operation. NUCLEAR FUSION, 62(4) [10.1088/1741-4326/ac47b4].

Overview of JET results for optimising ITER operation

Carnevale D.;Galeani S.;Gaudio P.;Gelfusa M.;Lungaroni M.;Marinelli M.;Milani E.;Moro F.;Peluso E.;Petrella N.;Romanelli F.;Rossi R.;Verona C.;Rinati G. V.;
2022-01-01

Abstract

The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.
2022
Pubblicato
Rilevanza internazionale
Recensione
Esperti anonimi
Settore FIS/01 - FISICA SPERIMENTALE
Settore ING-IND/18 - FISICA DEI REATTORI NUCLEARI
English
D–T preparation; tritium operations; plasma facing components (PFC); nuclear technology; JET with ITER-like wall; isotope
Mailloux, J., Abid, N., Abraham, K., Abreu, P., Adabonyan, O., Adrich, P., et al. (2022). Overview of JET results for optimising ITER operation. NUCLEAR FUSION, 62(4) [10.1088/1741-4326/ac47b4].
Mailloux, J; Abid, N; Abraham, K; Abreu, P; Adabonyan, O; Adrich, P; Afanasev, V; Afzal, M; Ahlgren, T; Aho-Mantila, L; Aiba, N; Airila, M; Akhtar, M;...espandi
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Mailloux_2022_Nucl._Fusion_62_042026.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.4 MB
Formato Adobe PDF
6.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/314735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 83
social impact