This note discusses the cyclic cohomology of a left Hopf algebroid (x(A)-Hopf algebra) with coefficients in a right module-left comodule, defined using a straightforward generalisation of the original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special case of this theory. A generalisation of cyclic duality that makes sense for arbitrary para-cyclic objects yields a dual homology theory. The twisted cyclic homology of an associative algebra provides an example of this dual theory that uses coefficients that are not necessarily stable anti Yetter-Drinfel'd modules.

Kowalzig, N., Krahmer, U. (2011). Cyclic structures in algebraic (CO)homology theories. HOMOLOGY, HOMOTOPY AND APPLICATIONS, 13(1), 297-318 [10.4310/HHA.2011.v13.n1.a12].

Cyclic structures in algebraic (CO)homology theories

Kowalzig N.;
2011-01-01

Abstract

This note discusses the cyclic cohomology of a left Hopf algebroid (x(A)-Hopf algebra) with coefficients in a right module-left comodule, defined using a straightforward generalisation of the original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special case of this theory. A generalisation of cyclic duality that makes sense for arbitrary para-cyclic objects yields a dual homology theory. The twisted cyclic homology of an associative algebra provides an example of this dual theory that uses coefficients that are not necessarily stable anti Yetter-Drinfel'd modules.
2011
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
cyclic homology
Hopf algebroid
twisted cyclic homology
Lie-Rinehart algebra
Kowalzig, N., Krahmer, U. (2011). Cyclic structures in algebraic (CO)homology theories. HOMOLOGY, HOMOTOPY AND APPLICATIONS, 13(1), 297-318 [10.4310/HHA.2011.v13.n1.a12].
Kowalzig, N; Krahmer, U
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/313889
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact