: Purpose. This investigation aims to present the characterisation and optimisation of an ultra-high pulse dose rate (UHPDR) electron beam at the PTB facility in Germany. A Monte Carlo beam model has been developed for dosimetry study for future investigation in FLASH radiotherapy and will be presented.Material and methods. The 20 MeV electron beams generated by the research linear accelerator has been characterised both in-beamline with profile monitors and magnet spectrometer, and in-water with a diamond detector prototype. The Monte Carlo model has been used to investigate six different setups to enable different dose per pulse (DPP) ranges and beam sizes in water. The properties of the electron radiation field in water have also been characterised in terms of beam size, quality specifierR50and flatness. The beam stability has also been studied.Results. The difference between the Monte-Carlo simulated and measuredR50was smaller than 0.5 mm. The simulated beam sizes agreed with the measured ones within 2 mm. Two suitable setups have been identified for delivering reference UHPDR electron beams. The first one is characterised by a SSD of 70 cm, while in the second one an SSD of 90 cm is used in combination with a 2 mm aluminium scattering plates. The two set-ups are quick and simple to install and enable an expected overall DPP range from 0.13 Gy up to 6.7 Gy per pulse.Conclusion. The electron beams generated by the PTB research accelerator have shown to be stable throughout the four-months length of this investigation. The Monte Carlo models have shown to be in good agreement for beam size and depth dose and within 1% for the beam flatness. The diamond detector prototype has shown to be a promising tool to be used for relative measurements in UHPDR electron beams.
Bourgouin, A., Knyziak, A., Marinelli, M., Kranzer, R., Schuller, A., Kapsch, R.-. (2022). Characterization of the PTB ultra-high pulse dose rate reference electron beam. PHYSICS IN MEDICINE & BIOLOGY, 67(8) [10.1088/1361-6560/ac5de8].
Characterization of the PTB ultra-high pulse dose rate reference electron beam
Marinelli M.;
2022-01-01
Abstract
: Purpose. This investigation aims to present the characterisation and optimisation of an ultra-high pulse dose rate (UHPDR) electron beam at the PTB facility in Germany. A Monte Carlo beam model has been developed for dosimetry study for future investigation in FLASH radiotherapy and will be presented.Material and methods. The 20 MeV electron beams generated by the research linear accelerator has been characterised both in-beamline with profile monitors and magnet spectrometer, and in-water with a diamond detector prototype. The Monte Carlo model has been used to investigate six different setups to enable different dose per pulse (DPP) ranges and beam sizes in water. The properties of the electron radiation field in water have also been characterised in terms of beam size, quality specifierR50and flatness. The beam stability has also been studied.Results. The difference between the Monte-Carlo simulated and measuredR50was smaller than 0.5 mm. The simulated beam sizes agreed with the measured ones within 2 mm. Two suitable setups have been identified for delivering reference UHPDR electron beams. The first one is characterised by a SSD of 70 cm, while in the second one an SSD of 90 cm is used in combination with a 2 mm aluminium scattering plates. The two set-ups are quick and simple to install and enable an expected overall DPP range from 0.13 Gy up to 6.7 Gy per pulse.Conclusion. The electron beams generated by the PTB research accelerator have shown to be stable throughout the four-months length of this investigation. The Monte Carlo models have shown to be in good agreement for beam size and depth dose and within 1% for the beam flatness. The diamond detector prototype has shown to be a promising tool to be used for relative measurements in UHPDR electron beams.File | Dimensione | Formato | |
---|---|---|---|
Bourgouin_2022_Phys._Med._Biol._67_085013.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.85 MB
Formato
Adobe PDF
|
4.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.