We introduce classifiers based on directional quantiles. We derive theoretical results for selecting optimal quantile levels given a direction, and, conversely, an optimal direction given a quantile level. We also show that the probability of correct classification of the proposed classifier converges to one if population distributions differ by at most a location shift and if the number of directions is allowed to diverge at the same rate of the problem’s dimension. We illustrate the satisfactory performance of our proposed classifiers in both small- and high-dimensional settings via a simulation study and a real data example. The code implementing the proposed methods is publicly available in the R package Qtools. Supplementary materials for this article are available online.

Farcomeni, A., Geraci, M., Viroli, C. (2022). Directional quantile classifiers. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 31(3), 907-916 [10.1080/10618600.2021.2021209].

Directional quantile classifiers

Farcomeni, A;
2022-01-01

Abstract

We introduce classifiers based on directional quantiles. We derive theoretical results for selecting optimal quantile levels given a direction, and, conversely, an optimal direction given a quantile level. We also show that the probability of correct classification of the proposed classifier converges to one if population distributions differ by at most a location shift and if the number of directions is allowed to diverge at the same rate of the problem’s dimension. We illustrate the satisfactory performance of our proposed classifiers in both small- and high-dimensional settings via a simulation study and a real data example. The code implementing the proposed methods is publicly available in the R package Qtools. Supplementary materials for this article are available online.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore SECS-S/01 - STATISTICA
Settore STAT-01/A - Statistica
English
Farcomeni, A., Geraci, M., Viroli, C. (2022). Directional quantile classifiers. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 31(3), 907-916 [10.1080/10618600.2021.2021209].
Farcomeni, A; Geraci, M; Viroli, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
dqc.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/313320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact