We prove that by scaling nearest-neighbour ferromagnetic energies defined on Poisson random sets in the plane one obtains an isotropic perimeter energy with a surface tension characterised by an asymptotic formula. The result relies on proving that cells with 'very long' or 'very short' edges of the corresponding Voronoi tessellation can be neglected. In this way we may apply Geometry Measure Theory tools to define a compact convergence, and a characterisation of metric properties of clusters of Voronoi cells using limit theorems for subadditive processes.

Braides, A., Piatnitski, A. (2022). Homogenization of ferromagnetic energies on Poisson random sets in the plane. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 243(2), 433-458 [10.1007/s00205-021-01732-6].

Homogenization of ferromagnetic energies on Poisson random sets in the plane

Andrea Braides;
2022-01-01

Abstract

We prove that by scaling nearest-neighbour ferromagnetic energies defined on Poisson random sets in the plane one obtains an isotropic perimeter energy with a surface tension characterised by an asymptotic formula. The result relies on proving that cells with 'very long' or 'very short' edges of the corresponding Voronoi tessellation can be neglected. In this way we may apply Geometry Measure Theory tools to define a compact convergence, and a characterisation of metric properties of clusters of Voronoi cells using limit theorems for subadditive processes.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Braides, A., Piatnitski, A. (2022). Homogenization of ferromagnetic energies on Poisson random sets in the plane. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 243(2), 433-458 [10.1007/s00205-021-01732-6].
Braides, A; Piatnitski, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/312766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact