This paper establishes finite active-set identification of an almost cyclic 2-coordinate descent method for problems with one linear coupling constraint and simple bounds. First, general active-set identification results are stated for nonconvex objective functions. Then, under convexity and a quadratic growth condition (satisfied by any strongly convex function), complexity results on the number of iterations required to identify the active set are given. In our analysis, a simple Armijo line search is used to compute the stepsize, thus not requiring exact minimizations or additional information.
Cristofari, A. (2022). Active-Set Identification with Complexity Guarantees of an Almost Cyclic 2-Coordinate Descent Method with Armijo Line Search. SIAM JOURNAL ON OPTIMIZATION, 32(2), 739-764 [10.1137/20M1328014].
Active-Set Identification with Complexity Guarantees of an Almost Cyclic 2-Coordinate Descent Method with Armijo Line Search
Cristofari, Andrea
2022-01-01
Abstract
This paper establishes finite active-set identification of an almost cyclic 2-coordinate descent method for problems with one linear coupling constraint and simple bounds. First, general active-set identification results are stated for nonconvex objective functions. Then, under convexity and a quadratic growth condition (satisfied by any strongly convex function), complexity results on the number of iterations required to identify the active set are given. In our analysis, a simple Armijo line search is used to compute the stepsize, thus not requiring exact minimizations or additional information.File | Dimensione | Formato | |
---|---|---|---|
M132801.pdf
solo utenti autorizzati
Licenza:
Non specificato
Dimensione
521.57 kB
Formato
Adobe PDF
|
521.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.