The availability of sensors able to rapidly detect SARS-CoV-2 directly in biological fluids in a single step would allow performing massive diagnostic testing to track in real time and contain the spread of COVID-19. Motivated by this, here, we developed an electrochemical aptamer-based (EAB) sensor able to achieve the rapid, reagentless, and quantitative measurement of the SARS-CoV-2 spike (S) protein. First, we demonstrated the ability of the selected aptamer to undergo a binding-induced conformational change in the presence of its target using fluorescence spectroscopy. Then, we engineered the aptamer to work as a bioreceptor in the EAB platform and we demonstrated its sensitivity and specificity. Finally, to demonstrate the clinical potential of the sensor, we tested it directly in biological fluids (serum and artificial saliva), achieving the rapid (minutes) and single-step detection of the S protein in its clinical range.

Idili, A., Parolo, C., Alvarez-Diduk, R., Merkoçi, A. (2021). Rapid and efficient detection of the SARS-CoV-2 spike protein using an electrochemical aptamer-based sensor. ACS SENSORS, 6(8), 3093-3101 [10.1021/acssensors.1c01222].

Rapid and efficient detection of the SARS-CoV-2 spike protein using an electrochemical aptamer-based sensor

A. Idili
Conceptualization
;
2021-08-10

Abstract

The availability of sensors able to rapidly detect SARS-CoV-2 directly in biological fluids in a single step would allow performing massive diagnostic testing to track in real time and contain the spread of COVID-19. Motivated by this, here, we developed an electrochemical aptamer-based (EAB) sensor able to achieve the rapid, reagentless, and quantitative measurement of the SARS-CoV-2 spike (S) protein. First, we demonstrated the ability of the selected aptamer to undergo a binding-induced conformational change in the presence of its target using fluorescence spectroscopy. Then, we engineered the aptamer to work as a bioreceptor in the EAB platform and we demonstrated its sensitivity and specificity. Finally, to demonstrate the clinical potential of the sensor, we tested it directly in biological fluids (serum and artificial saliva), achieving the rapid (minutes) and single-step detection of the S protein in its clinical range.
10-ago-2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore CHIM/01 - CHIMICA ANALITICA
English
Con Impact Factor ISI
aptasensors; COVID-19; EAB sensors; electrochemical sensors; infectious diseases
https://pubs.acs.org/doi/full/10.1021/acssensors.1c01222
Idili, A., Parolo, C., Alvarez-Diduk, R., Merkoçi, A. (2021). Rapid and efficient detection of the SARS-CoV-2 spike protein using an electrochemical aptamer-based sensor. ACS SENSORS, 6(8), 3093-3101 [10.1021/acssensors.1c01222].
Idili, A; Parolo, C; Alvarez-Diduk, R; Merkoçi, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
acssensors.1c01222_COVID19.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.03 MB
Formato Adobe PDF
3.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/312625
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 126
  • ???jsp.display-item.citation.isi??? 112
social impact