Transcendental Henon maps are the natural extensions of the well investigated complex polynomial Henon maps to the much larger class of holomorphic automorphisms. We prove here that transcendental Henon maps always have non-trivial dynamical behavior, namely that they always admit both periodic and escaping orbits, and that their Julia sets are non-empty and perfect.

Arosio, L., Miriam Benini, A., Erik Forn??ss, J., Peters, H. (2023). Dynamics of transcendental Hénon maps-II. MATHEMATISCHE ANNALEN, 385(3-4) [10.1007/s00208-022-02358-z].

Dynamics of transcendental Hénon maps-II

Leandro Arosio;
2023-01-01

Abstract

Transcendental Henon maps are the natural extensions of the well investigated complex polynomial Henon maps to the much larger class of holomorphic automorphisms. We prove here that transcendental Henon maps always have non-trivial dynamical behavior, namely that they always admit both periodic and escaping orbits, and that their Julia sets are non-empty and perfect.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
Settore MATH-02/B - Geometria
English
Arosio, L., Miriam Benini, A., Erik Forn??ss, J., Peters, H. (2023). Dynamics of transcendental Hénon maps-II. MATHEMATISCHE ANNALEN, 385(3-4) [10.1007/s00208-022-02358-z].
Arosio, L; Miriam Benini, A; Erik Forn??ss, J; Peters, H
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Dynamics of transcendental Henon maps-II.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 443.47 kB
Formato Adobe PDF
443.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/312415
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact