In this paper, we describe a new active-set algorithmic framework for minimizing a non-convex function over the unit simplex. At each iteration, the method makes use of a rule for identifying active variables (i.e., variables that are zero at a stationary point) and specific directions (that we name active-set gradient related directions) satisfying a new “nonorthogonality” type of condition. We prove global convergence to stationary points when using an Armijo line search in the given framework. We further describe three different examples of active-set gradient related directions that guarantee linear convergence rate (under suitable assumptions). Finally, we report numerical experiments showing the effectiveness of the approach.

Cristofari, A., De Santis, M., Lucidi, S., Rinaldi, F. (2020). An active-set algorithmic framework for non-convex optimization problems over the simplex. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 77(1), 57-89 [10.1007/s10589-020-00195-x].

An active-set algorithmic framework for non-convex optimization problems over the simplex

Cristofari, Andrea
;
2020-01-01

Abstract

In this paper, we describe a new active-set algorithmic framework for minimizing a non-convex function over the unit simplex. At each iteration, the method makes use of a rule for identifying active variables (i.e., variables that are zero at a stationary point) and specific directions (that we name active-set gradient related directions) satisfying a new “nonorthogonality” type of condition. We prove global convergence to stationary points when using an Armijo line search in the given framework. We further describe three different examples of active-set gradient related directions that guarantee linear convergence rate (under suitable assumptions). Finally, we report numerical experiments showing the effectiveness of the approach.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/09 - RICERCA OPERATIVA
English
Active-set methods
Unit simplex
Non-convex optimization
Large-scale optimization
https://link.springer.com/article/10.1007/s10589-020-00195-x
Cristofari, A., De Santis, M., Lucidi, S., Rinaldi, F. (2020). An active-set algorithmic framework for non-convex optimization problems over the simplex. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 77(1), 57-89 [10.1007/s10589-020-00195-x].
Cristofari, A; De Santis, M; Lucidi, S; Rinaldi, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
as_simplex.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 701.17 kB
Formato Adobe PDF
701.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/312405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact