We prove some Liouville type theorems for positive solutions of semilinear elliptic equations in the whole space R-N, N greater than or equal to 3, and in the half space R-+(N) with different boundary conditions, using the technique based on the Kelvin transform and the Alexandrov-Serrin method of moving hyperplanes. In particular we get new nonexistence results for elliptic problems in half spaces satisfying mixed (Dirichlet-Neumann) boundary conditions.

Damascelli, L., Gladiali, P. (2004). Some nonexistence results for positive solutions of elliptic equations in unbounded domains. REVISTA MATEMATICA IBEROAMERICANA, 20(1), 67-86.

Some nonexistence results for positive solutions of elliptic equations in unbounded domains

DAMASCELLI, LUCIO;
2004-01-01

Abstract

We prove some Liouville type theorems for positive solutions of semilinear elliptic equations in the whole space R-N, N greater than or equal to 3, and in the half space R-+(N) with different boundary conditions, using the technique based on the Kelvin transform and the Alexandrov-Serrin method of moving hyperplanes. In particular we get new nonexistence results for elliptic problems in half spaces satisfying mixed (Dirichlet-Neumann) boundary conditions.
2004
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Kelvin transform; Liouville theorems; Maximum principle; Moving plane
Damascelli, L., Gladiali, P. (2004). Some nonexistence results for positive solutions of elliptic equations in unbounded domains. REVISTA MATEMATICA IBEROAMERICANA, 20(1), 67-86.
Damascelli, L; Gladiali, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/31228
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact