We revisit the gauge symmetry related to integrable projective transformations in metric-affine formalism, identifying the gauge field of the Weyl (conformal) symmetry as a dynamical component of the affine connection. In particular, we show how to include the local scaling symmetry as a gauge symmetry of a large class of geometric gravity theories, introducing a compensator dilaton field that naturally gives rise to a Stuckelberg sector where a spontaneous breaking mechanism of the conformal symmetry is at work to generate a mass scale for the gauge field. For Ricci-based gravities that include, among others, General Relativity, f(R) and f(R, R mu nu R mu nu) theories and the EiBI model, we prove that the on-shell gauge vector associated to the scaling symmetry can be identified with the torsion vector, thus recovering and generalizing conformal invariant theories in the Riemann-Cartan formalism, already present in the literature.

Olmo, G.j., Orazi, E., Pradisi, G. (2022). Conformal metric-affine gravities. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022(10) [10.1088/1475-7516/2022/10/057].

Conformal metric-affine gravities

Pradisi G.
2022-01-01

Abstract

We revisit the gauge symmetry related to integrable projective transformations in metric-affine formalism, identifying the gauge field of the Weyl (conformal) symmetry as a dynamical component of the affine connection. In particular, we show how to include the local scaling symmetry as a gauge symmetry of a large class of geometric gravity theories, introducing a compensator dilaton field that naturally gives rise to a Stuckelberg sector where a spontaneous breaking mechanism of the conformal symmetry is at work to generate a mass scale for the gauge field. For Ricci-based gravities that include, among others, General Relativity, f(R) and f(R, R mu nu R mu nu) theories and the EiBI model, we prove that the on-shell gauge vector associated to the scaling symmetry can be identified with the torsion vector, thus recovering and generalizing conformal invariant theories in the Riemann-Cartan formalism, already present in the literature.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI
English
Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories
modified gravity
Olmo, G.j., Orazi, E., Pradisi, G. (2022). Conformal metric-affine gravities. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022(10) [10.1088/1475-7516/2022/10/057].
Olmo, Gj; Orazi, E; Pradisi, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
J._Cosmol._Astropart._Phys._2022_057.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 905.07 kB
Formato Adobe PDF
905.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/311916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact