Coherence and de-coherence are the most fundamental steps that follow the initial photo-excitation occurring in typical pump-and-probe experiments. Indeed, the initial external laser pulse transfers coherence to the system in terms of creation of multiple electron-hole pairs excitation. The excitation concurs both to the creation of a finite carriers density and to the appearance of induced electromagnetic fields. The two effects, to a very first approximation, can be connected to the simple concepts of populations and oscillations. The dynamics of the system following the initial photo-excitation is, thus, entirely dictated by the interplay between coherence and de-coherence. This interplay and the de-coherence process itself, is due to the correlation effects stimulated by the photo-excitation. Single-particle, like the electron-phonon, and two-particles, like the electron-electron, scattering processes induce a complex dynamics of the electrons that, in turn, makes the description of the correlated and photo-excited system in terms of pure excitonic and/or carriers populations challenging.
Marini, A., Perfetto, E., Stefanucci, G. (2022). Coherence and de-coherence in the Time-Resolved ARPES of realistic materials: an ab-initio perspective. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 257 [10.1016/j.elspec.2022.147189].
Coherence and de-coherence in the Time-Resolved ARPES of realistic materials: an ab-initio perspective
Perfetto E.;Stefanucci G.
2022-01-01
Abstract
Coherence and de-coherence are the most fundamental steps that follow the initial photo-excitation occurring in typical pump-and-probe experiments. Indeed, the initial external laser pulse transfers coherence to the system in terms of creation of multiple electron-hole pairs excitation. The excitation concurs both to the creation of a finite carriers density and to the appearance of induced electromagnetic fields. The two effects, to a very first approximation, can be connected to the simple concepts of populations and oscillations. The dynamics of the system following the initial photo-excitation is, thus, entirely dictated by the interplay between coherence and de-coherence. This interplay and the de-coherence process itself, is due to the correlation effects stimulated by the photo-excitation. Single-particle, like the electron-phonon, and two-particles, like the electron-electron, scattering processes induce a complex dynamics of the electrons that, in turn, makes the description of the correlated and photo-excited system in terms of pure excitonic and/or carriers populations challenging.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.