We consider the algebras generated by observables in quantum field theory localized in regions in the null plane. For a scalar free field theory, we show that the one-particle structure can be decomposed into a continuous direct integral of lightlike fibres and the modular operator decomposes accordingly. This implies that a certain form of QNEC is valid in free fields involving the causal completions of half-spaces on the null plane (null cuts). We also compute the relative entropy of null cut algebras with respect to the vacuum and some coherent states.

Morinelli, V., Tanimoto, Y., Wegener, B. (2022). Modular operator for null plane algebras in free fields. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 395(1), 331-363 [10.1007/s00220-022-04432-8].

Modular operator for null plane algebras in free fields

Morinelli V.;Tanimoto Y.;
2022-01-01

Abstract

We consider the algebras generated by observables in quantum field theory localized in regions in the null plane. For a scalar free field theory, we show that the one-particle structure can be decomposed into a continuous direct integral of lightlike fibres and the modular operator decomposes accordingly. This implies that a certain form of QNEC is valid in free fields involving the causal completions of half-spaces on the null plane (null cuts). We also compute the relative entropy of null cut algebras with respect to the vacuum and some coherent states.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Morinelli, V., Tanimoto, Y., Wegener, B. (2022). Modular operator for null plane algebras in free fields. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 395(1), 331-363 [10.1007/s00220-022-04432-8].
Morinelli, V; Tanimoto, Y; Wegener, B
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
33_MTW_ModularOperator.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 773.53 kB
Formato Adobe PDF
773.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/311536
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact