We prove an equivalence between the following notions: (i) unitary Mobius vertex algebras, and (ii) Wightman conformal field theories on the circle (with finite-dimensional conformal weight spaces) satisfying an additional condition that we call uniformly bounded order. Reading this equivalence in one direction, we obtain new analytic and operator-theoretic information about vertex operators. In the other direction we characterize OPEs of Wightman fields and show they satisfy the axioms of a vertex algebra. As an application we establish new results linking unitary vertex operator algebras with conformal nets.

Raymond, C., Tanimoto, Y., Tener, J.e. (2022). Unitary vertex algebras and Wightman conformal field theories. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 395(1), 299-330 [10.1007/s00220-022-04431-9].

Unitary vertex algebras and Wightman conformal field theories

Tanimoto Y.;
2022-01-01

Abstract

We prove an equivalence between the following notions: (i) unitary Mobius vertex algebras, and (ii) Wightman conformal field theories on the circle (with finite-dimensional conformal weight spaces) satisfying an additional condition that we call uniformly bounded order. Reading this equivalence in one direction, we obtain new analytic and operator-theoretic information about vertex operators. In the other direction we characterize OPEs of Wightman fields and show they satisfy the axioms of a vertex algebra. As an application we establish new results linking unitary vertex operator algebras with conformal nets.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
English
Raymond, C., Tanimoto, Y., Tener, J.e. (2022). Unitary vertex algebras and Wightman conformal field theories. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 395(1), 299-330 [10.1007/s00220-022-04431-9].
Raymond, C; Tanimoto, Y; Tener, Je
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
34_RTT_Unitary_vertex_algebras.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 477.86 kB
Formato Adobe PDF
477.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/311535
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact