: Several studies agree that mechanical vibration can induce physiological changes at different levels, improving neuromuscular function through postural control strategies, muscle tuning mechanisms and tonic vibration reflexes. Whole-body vibration has also been reported to increase bone mineral density and muscle mass and strength, as well as to relieve pain and modulate proprioceptive function in patients with osteoarthritis or lower back pain. Furthermore, vibratory training was found to be an effective strategy for improving the physical performance of healthy athletes in terms of muscle strength, agility, flexibility, and vertical jump height. Notably, several benefits have also been observed at the brain level, proving to be an important factor in protecting and/or preventing the development of age-related cognitive disorders. Although research in this field is still debated, certain molecular mechanisms responsible for the response to whole-body vibration also appear to be involved in physiological adaptations to exercise, suggesting the possibility of using it as an alternative or reinforcing strategy to canonical training. Understanding these mechanisms is crucial for the development of whole body vibration protocols appropriately designed based on individual needs to optimize these effects. Therefore, we performed a narrative review of the literature, consulting the bibliographic databases MEDLINE and Google Scholar, to i) summarize the most recent scientific evidence on the effects of whole-body vibration and the molecular mechanisms proposed so far to provide a useful state of the art and ii) assess the potential of whole-body vibration as a form of passive training in place of or in association with exercise.

Bonanni, R., Cariati, I., Romagnoli, C., D'Arcangelo, G., Annino, G., Tancredi, V. (2022). Whole Body Vibration: A Valid Alternative Strategy to Exercise?. JOURNAL OF FUNCTIONAL MORPHOLOGY AND KINESIOLOGY, 7(4), 99 [10.3390/jfmk7040099].

Whole Body Vibration: A Valid Alternative Strategy to Exercise?

Cariati, Ida;D'Arcangelo, Giovanna;Annino, Giuseppe;Tancredi, Virginia
2022-11-03

Abstract

: Several studies agree that mechanical vibration can induce physiological changes at different levels, improving neuromuscular function through postural control strategies, muscle tuning mechanisms and tonic vibration reflexes. Whole-body vibration has also been reported to increase bone mineral density and muscle mass and strength, as well as to relieve pain and modulate proprioceptive function in patients with osteoarthritis or lower back pain. Furthermore, vibratory training was found to be an effective strategy for improving the physical performance of healthy athletes in terms of muscle strength, agility, flexibility, and vertical jump height. Notably, several benefits have also been observed at the brain level, proving to be an important factor in protecting and/or preventing the development of age-related cognitive disorders. Although research in this field is still debated, certain molecular mechanisms responsible for the response to whole-body vibration also appear to be involved in physiological adaptations to exercise, suggesting the possibility of using it as an alternative or reinforcing strategy to canonical training. Understanding these mechanisms is crucial for the development of whole body vibration protocols appropriately designed based on individual needs to optimize these effects. Therefore, we performed a narrative review of the literature, consulting the bibliographic databases MEDLINE and Google Scholar, to i) summarize the most recent scientific evidence on the effects of whole-body vibration and the molecular mechanisms proposed so far to provide a useful state of the art and ii) assess the potential of whole-body vibration as a form of passive training in place of or in association with exercise.
3-nov-2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore M-EDF/01 - METODI E DIDATTICHE DELLE ATTIVITA' MOTORIE
English
alternative strategy
cognitive function
exercise
musculoskeletal disorders
neurodegeneration
pain
physiological adaptations
prevention
whole-body vibration
Bonanni, R., Cariati, I., Romagnoli, C., D'Arcangelo, G., Annino, G., Tancredi, V. (2022). Whole Body Vibration: A Valid Alternative Strategy to Exercise?. JOURNAL OF FUNCTIONAL MORPHOLOGY AND KINESIOLOGY, 7(4), 99 [10.3390/jfmk7040099].
Bonanni, R; Cariati, I; Romagnoli, C; D'Arcangelo, G; Annino, G; Tancredi, V
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/311139
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact