Let $(X, \omega)$ be a compact K\"ahler manifold of complex dimension n and $\theta$ be a smooth closed real $(1,1)$-form on $X$ such that its cohomology class $\{ \theta \}\in H^{1,1}(X, \mathbb{R})$ is pseudoeffective. Let $\varphi$ be a $\theta$-psh function, and let $f$ be a continuous function on $X$ with bounded distributional laplacian with respect to $\omega$ such that $\varphi \leq f. $ Then the non-pluripolar measure $\theta_\varphi^n:= (\theta + dd^c \varphi)^n$ satisfies the equality: $$ {\bf{1}}_{\{ \varphi = f \}} \ \theta_\varphi^n = {\bf{1}}_{\{ \varphi = f \}} \ \theta_f^n,$$ where, for a subset $T\subseteq X$, ${\bf{1}}_T$ is the characteristic function. In particular we prove that \[ \theta_{P_{\theta}(f)}^n= { \bf {1}}_{\{P_{\theta}(f) = f\}} \ \theta_f^n\qquad {\rm and }\qquad \theta_{P_\theta[\varphi](f)}^n = { \bf {1}}_{\{P_\theta[\varphi](f) = f \}} \ \theta_f^n. \]
Di Nezza, E., Trapani, S. (2021). Monge-Ampère measures on contact sets. MATHEMATICAL RESEARCH LETTERS, 28(5), 1337-1352 [10.4310/MRL.2021.V28.N5.A3].
Monge-Ampère measures on contact sets
Di Nezza, Eleonora
Writing – Review & Editing
;Trapani, Stefano
Writing – Review & Editing
2021-12-29
Abstract
Let $(X, \omega)$ be a compact K\"ahler manifold of complex dimension n and $\theta$ be a smooth closed real $(1,1)$-form on $X$ such that its cohomology class $\{ \theta \}\in H^{1,1}(X, \mathbb{R})$ is pseudoeffective. Let $\varphi$ be a $\theta$-psh function, and let $f$ be a continuous function on $X$ with bounded distributional laplacian with respect to $\omega$ such that $\varphi \leq f. $ Then the non-pluripolar measure $\theta_\varphi^n:= (\theta + dd^c \varphi)^n$ satisfies the equality: $$ {\bf{1}}_{\{ \varphi = f \}} \ \theta_\varphi^n = {\bf{1}}_{\{ \varphi = f \}} \ \theta_f^n,$$ where, for a subset $T\subseteq X$, ${\bf{1}}_T$ is the characteristic function. In particular we prove that \[ \theta_{P_{\theta}(f)}^n= { \bf {1}}_{\{P_{\theta}(f) = f\}} \ \theta_f^n\qquad {\rm and }\qquad \theta_{P_\theta[\varphi](f)}^n = { \bf {1}}_{\{P_\theta[\varphi](f) = f \}} \ \theta_f^n. \]File | Dimensione | Formato | |
---|---|---|---|
MONGECONTACT.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
170.74 kB
Formato
Adobe PDF
|
170.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.