Let $(X, \omega)$ be a compact K\"ahler manifold of complex dimension n and $\theta$ be a smooth closed real $(1,1)$-form on $X$ such that its cohomology class $\{ \theta \}\in H^{1,1}(X, \mathbb{R})$ is pseudoeffective. Let $\varphi$ be a $\theta$-psh function, and let $f$ be a continuous function on $X$ with bounded distributional laplacian with respect to $\omega$ such that $\varphi \leq f. $ Then the non-pluripolar measure $\theta_\varphi^n:= (\theta + dd^c \varphi)^n$ satisfies the equality: $$ {\bf{1}}_{\{ \varphi = f \}} \ \theta_\varphi^n = {\bf{1}}_{\{ \varphi = f \}} \ \theta_f^n,$$ where, for a subset $T\subseteq X$, ${\bf{1}}_T$ is the characteristic function. In particular we prove that \[ \theta_{P_{\theta}(f)}^n= { \bf {1}}_{\{P_{\theta}(f) = f\}} \ \theta_f^n\qquad {\rm and }\qquad \theta_{P_\theta[\varphi](f)}^n = { \bf {1}}_{\{P_\theta[\varphi](f) = f \}} \ \theta_f^n. \]

Di Nezza, E., Trapani, S. (2021). Monge-Ampère measures on contact sets. MATHEMATICAL RESEARCH LETTERS, 28(5), 1337-1352 [10.4310/MRL.2021.V28.N5.A3].

Monge-Ampère measures on contact sets

Di Nezza, Eleonora
Writing – Review & Editing
;
Trapani, Stefano
Writing – Review & Editing
2021-12-29

Abstract

Let $(X, \omega)$ be a compact K\"ahler manifold of complex dimension n and $\theta$ be a smooth closed real $(1,1)$-form on $X$ such that its cohomology class $\{ \theta \}\in H^{1,1}(X, \mathbb{R})$ is pseudoeffective. Let $\varphi$ be a $\theta$-psh function, and let $f$ be a continuous function on $X$ with bounded distributional laplacian with respect to $\omega$ such that $\varphi \leq f. $ Then the non-pluripolar measure $\theta_\varphi^n:= (\theta + dd^c \varphi)^n$ satisfies the equality: $$ {\bf{1}}_{\{ \varphi = f \}} \ \theta_\varphi^n = {\bf{1}}_{\{ \varphi = f \}} \ \theta_f^n,$$ where, for a subset $T\subseteq X$, ${\bf{1}}_T$ is the characteristic function. In particular we prove that \[ \theta_{P_{\theta}(f)}^n= { \bf {1}}_{\{P_{\theta}(f) = f\}} \ \theta_f^n\qquad {\rm and }\qquad \theta_{P_\theta[\varphi](f)}^n = { \bf {1}}_{\{P_\theta[\varphi](f) = f \}} \ \theta_f^n. \]
29-dic-2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Mathematics - Complex Variables
http://arxiv.org/abs/1912.12720v1
Di Nezza, E., Trapani, S. (2021). Monge-Ampère measures on contact sets. MATHEMATICAL RESEARCH LETTERS, 28(5), 1337-1352 [10.4310/MRL.2021.V28.N5.A3].
Di Nezza, E; Trapani, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
MONGECONTACT.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 170.74 kB
Formato Adobe PDF
170.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/310637
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact