The odd diagram of a permutation is a subset of the classical diagram with additional parity conditions. In this paper, we study classes of permutations with the same odd diagram, which we call odd diagram classes. First, we prove a conjecture relating odd diagram classes and 213- and 312-avoiding permutations. Secondly, we show that each odd diagram class is a Bruhat interval. Instrumental to our proofs is an explicit description of the Bruhat edges that link permutations in a class.
Brenti, F., Carnevale, A., Tenner, B.e. (2022). Odd diagrams, Bruhat order, and pattern avoidance. COMBINATORIAL THEORY, 2(1), 1-19 [10.5070/C62156885].
Odd diagrams, Bruhat order, and pattern avoidance
Brenti, Francesco;Carnevale, Angela
;
2022-03-01
Abstract
The odd diagram of a permutation is a subset of the classical diagram with additional parity conditions. In this paper, we study classes of permutations with the same odd diagram, which we call odd diagram classes. First, we prove a conjecture relating odd diagram classes and 213- and 312-avoiding permutations. Secondly, we show that each odd diagram class is a Bruhat interval. Instrumental to our proofs is an explicit description of the Bruhat edges that link permutations in a class.File | Dimensione | Formato | |
---|---|---|---|
bct.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
427.99 kB
Formato
Adobe PDF
|
427.99 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.