We prove the existence of (a pair of) least energy sign changing solutions of {-Delta u = vertical bar u vertical bar(2*-2)u + lambda u in Omega u = 0 on partial derivative Omega when Omega is a bounded domain in R-N, N = 5 and. is slightly smaller than lambda(1), the first eigenvalue of -Delta with homogeneous Dirichlet boundary conditions on Omega.
Roselli, P., Willem, M. (2009). Least energy nodal solutions of the brezis-nirenberg problem in dimension n = 5. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 11(1), 59-69 [10.1142/S0219199709003314].
Least energy nodal solutions of the brezis-nirenberg problem in dimension n = 5
ROSELLI, PAOLO;
2009-01-01
Abstract
We prove the existence of (a pair of) least energy sign changing solutions of {-Delta u = vertical bar u vertical bar(2*-2)u + lambda u in Omega u = 0 on partial derivative Omega when Omega is a bounded domain in R-N, N = 5 and. is slightly smaller than lambda(1), the first eigenvalue of -Delta with homogeneous Dirichlet boundary conditions on Omega.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.