This paper presents a comprehensive review of multi-port power electronics converters used for application in AC, DC, or hybrid distribution systems in an Internet of Energy scenario. In particular, multi-port solid-state transformer (SST) topologies have been addressed and classified according to their isolation capabilities and their conversion stages configurations. Non-conventional configurations have been considered. A comparison of the most relevant features and design specifications between popular topologies has been provided through a comprehensive and effective table. Potential benefits of SSTs in distribution applications have been highlighted even with reference to a network active nodes usage. This review also highlights standards and technical regulations in force for connecting SSTs to the electrical distribution system. Finally, two case studies of multi-port topologies have been presented and discussed. The first one is an isolated multi-port bidirectional dual active bridge DC-DC converter useful in fast-charging applications. The second case of study deals with a three-port AC-AC multi-level power converter in H-Bridge configuration able to replicate a network active node and capable of routing and controlling energy under different operating conditions.
Granata, S., Di Benedetto, M., Terlizzi, C., Leuzzi, R., Bifaretti, S., Zanchetta, P. (2022). Power Electronics Converters for the Internet of Energy: A Review. ENERGIES, 15(7) [10.3390/en15072604].
Power Electronics Converters for the Internet of Energy: A Review
Bifaretti S.;
2022-04-01
Abstract
This paper presents a comprehensive review of multi-port power electronics converters used for application in AC, DC, or hybrid distribution systems in an Internet of Energy scenario. In particular, multi-port solid-state transformer (SST) topologies have been addressed and classified according to their isolation capabilities and their conversion stages configurations. Non-conventional configurations have been considered. A comparison of the most relevant features and design specifications between popular topologies has been provided through a comprehensive and effective table. Potential benefits of SSTs in distribution applications have been highlighted even with reference to a network active nodes usage. This review also highlights standards and technical regulations in force for connecting SSTs to the electrical distribution system. Finally, two case studies of multi-port topologies have been presented and discussed. The first one is an isolated multi-port bidirectional dual active bridge DC-DC converter useful in fast-charging applications. The second case of study deals with a three-port AC-AC multi-level power converter in H-Bridge configuration able to replicate a network active node and capable of routing and controlling energy under different operating conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.