Starting with a spectral triple on a unital C∗-algebra A with an action of a discrete group G, if the action is uniformly bounded (in a Lipschitz sense) a spectral triple on the reduced crossed product C∗-algebra A⋊rG is constructed in [Hawkins, Skalski, White, Zacharias. Mathematica Scandinavica 2013]. The main instrument is the Kasparov external product. We note that this construction still works for twisted crossed products when the twisted action is uniformly bounded in the appropriate sense. Under suitable assumptions, we discuss some basic properties of the resulting triples: summability and regularity. Noncommutative coverings with finite abelian structure group are among the most basic, still interesting, examples of twisted crossed products; we describe their main features.

Antonini, P., Isola, T., Rubin, A., Guido, D. (2022). A note on twisted crossed products and spectral triples. JOURNAL OF GEOMETRY AND PHYSICS, 180 [10.1016/j.geomphys.2022.104640].

A note on twisted crossed products and spectral triples

T. Isola;D. Guido
2022-01-01

Abstract

Starting with a spectral triple on a unital C∗-algebra A with an action of a discrete group G, if the action is uniformly bounded (in a Lipschitz sense) a spectral triple on the reduced crossed product C∗-algebra A⋊rG is constructed in [Hawkins, Skalski, White, Zacharias. Mathematica Scandinavica 2013]. The main instrument is the Kasparov external product. We note that this construction still works for twisted crossed products when the twisted action is uniformly bounded in the appropriate sense. Under suitable assumptions, we discuss some basic properties of the resulting triples: summability and regularity. Noncommutative coverings with finite abelian structure group are among the most basic, still interesting, examples of twisted crossed products; we describe their main features.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Spectral triples; Twisted crossed products; Noncommutative coverings
Antonini, P., Isola, T., Rubin, A., Guido, D. (2022). A note on twisted crossed products and spectral triples. JOURNAL OF GEOMETRY AND PHYSICS, 180 [10.1016/j.geomphys.2022.104640].
Antonini, P; Isola, T; Rubin, A; Guido, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0393044022001905-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 628.89 kB
Formato Adobe PDF
628.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/308957
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact