Terrestrial locomotion requires coordinated bilateral activation of limb muscles, with left-right alternation in walking or running, and synchronous activation in hopping or skipping. The neural mechanisms involved in interlimb coordination at birth are well known in different mammalian species, but less so in humans. Here, 46 neonates (of either sex) performed bilateral and unilateral stepping with one leg blocked in different positions. By recording EMG activities of lower-limb muscles, we observed episodes of left-right alternating or synchronous coordination. In most cases, the frequency of EMG oscillations during sequences of consecutive steps was approximately similar between the two sides, but in some cases it was considerably different, with episodes of 2:1 interlimb coordination and episodes of activity deletions on the blocked side. Hip position of the blocked limb significantly affected ipsilateral, but not contralateral, muscle activities. Thus, hip extension backward engaged hip flexor muscle, and hip flexion engaged hip extensors. Moreover, the sudden release of the blocked limb in the posterior position elicited the immediate initiation of the swing phase of the limb, with hip flexion and a burst of an ankle flexor muscle. Extensor muscles showed load responses at midstance. The variable interlimb coordination and its incomplete sensory modulation suggest that the neonatal locomotor networks do not operate in the same manner as in mature locomotion, also because of the limited cortical control at birth. These neonatal mechanisms share many properties with spinal mammalian preparations (i.e., independent pattern generators for each limb, and for flexor and extensor muscles, load, and hip position feedback).SIGNIFICANCE STATEMENT Bilateral coupling and reciprocal activation of flexor and extensor burst generators represent the fundamental mechanisms used by mammalian limbed locomotion. Considerable progress has been made in deciphering the early development of the spinal networks and left-right coordination in different mammals, but less is known about human newborns. We compared bilateral and unilateral stepping in human neonates, where cortical control is still underdeveloped. We found neonatal mechanisms that share many properties with spinal mammalian preparations (i.e., independent pattern generators for each limb, the independent generators for flexor and extensor muscles, load, and hip-position feedback. The variable interlimb coordination and its incomplete sensory modulation suggest that the human neonatal locomotor networks do not operate in the same manner as in mature locomotion.

Dewolf, A.h., La Scaleia, V., Fabiano, A., Sylos-Labini, F., Mondi, V., Picone, S., et al. (2022). Left-Right Locomotor Coordination in Human Neonates. THE JOURNAL OF NEUROSCIENCE, 42(34), 6566-6580 [10.1523/JNEUROSCI.0612-22.2022].

Left-Right Locomotor Coordination in Human Neonates

La Scaleia, Valentina;Sylos-Labini, Francesca;Mondi, Vito;Di Paolo, Ambrogio;Lacquaniti, Francesco
Conceptualization
2022-01-01

Abstract

Terrestrial locomotion requires coordinated bilateral activation of limb muscles, with left-right alternation in walking or running, and synchronous activation in hopping or skipping. The neural mechanisms involved in interlimb coordination at birth are well known in different mammalian species, but less so in humans. Here, 46 neonates (of either sex) performed bilateral and unilateral stepping with one leg blocked in different positions. By recording EMG activities of lower-limb muscles, we observed episodes of left-right alternating or synchronous coordination. In most cases, the frequency of EMG oscillations during sequences of consecutive steps was approximately similar between the two sides, but in some cases it was considerably different, with episodes of 2:1 interlimb coordination and episodes of activity deletions on the blocked side. Hip position of the blocked limb significantly affected ipsilateral, but not contralateral, muscle activities. Thus, hip extension backward engaged hip flexor muscle, and hip flexion engaged hip extensors. Moreover, the sudden release of the blocked limb in the posterior position elicited the immediate initiation of the swing phase of the limb, with hip flexion and a burst of an ankle flexor muscle. Extensor muscles showed load responses at midstance. The variable interlimb coordination and its incomplete sensory modulation suggest that the neonatal locomotor networks do not operate in the same manner as in mature locomotion, also because of the limited cortical control at birth. These neonatal mechanisms share many properties with spinal mammalian preparations (i.e., independent pattern generators for each limb, and for flexor and extensor muscles, load, and hip position feedback).SIGNIFICANCE STATEMENT Bilateral coupling and reciprocal activation of flexor and extensor burst generators represent the fundamental mechanisms used by mammalian limbed locomotion. Considerable progress has been made in deciphering the early development of the spinal networks and left-right coordination in different mammals, but less is known about human newborns. We compared bilateral and unilateral stepping in human neonates, where cortical control is still underdeveloped. We found neonatal mechanisms that share many properties with spinal mammalian preparations (i.e., independent pattern generators for each limb, the independent generators for flexor and extensor muscles, load, and hip-position feedback. The variable interlimb coordination and its incomplete sensory modulation suggest that the human neonatal locomotor networks do not operate in the same manner as in mature locomotion.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/09 - FISIOLOGIA
English
early development
human locomotion
interlimb coordination
neonatal stepping
Animals
Electromyography
Hindlimb
Humans
Infant, Newborn
Mammals
Walking
Locomotion
Muscle, Skeletal
Dewolf, A.h., La Scaleia, V., Fabiano, A., Sylos-Labini, F., Mondi, V., Picone, S., et al. (2022). Left-Right Locomotor Coordination in Human Neonates. THE JOURNAL OF NEUROSCIENCE, 42(34), 6566-6580 [10.1523/JNEUROSCI.0612-22.2022].
Dewolf, Ah; La Scaleia, V; Fabiano, A; Sylos-Labini, F; Mondi, V; Picone, S; Di Paolo, A; Paolillo, P; Ivanenko, Y; Lacquaniti, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Dewolf_JN2022.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 3.61 MB
Formato Adobe PDF
3.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/308637
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact