This paper demonstrates the capabilities of convolutional neural networks (CNNs) at classifying types of motion starting from time series, without any prior knowledge of the underlying dynamics. The paper applies different forms of deep learning to problems of increasing complexity with the goal of testing the ability of different deep learning architectures at predicting the character of the dynamics by simply observing a time-ordered set of data. We will demonstrate that a properly trained CNN can correctly classify the types of motion on a given data set. We also demonstrate effective generalisation capabilities by using a CNN trained on one dynamic model to predict the character of the motion governed by another dynamic model. The ability to predict types of motion from observations is then verified on a model problem known as the forced pendulum and on a relevant problem in Celestial Mechanics where observational data can be used to predict the long-term evolution of the system.

Celletti, A., Gales, C., Rodriguez-Fernandez, V., Vasile, M. (2022). Classification of regular and chaotic motions in Hamiltonian systems with deep learning. SCIENTIFIC REPORTS, 12(1) [10.1038/s41598-022-05696-9].

Classification of regular and chaotic motions in Hamiltonian systems with deep learning

Celletti A.;
2022-01-01

Abstract

This paper demonstrates the capabilities of convolutional neural networks (CNNs) at classifying types of motion starting from time series, without any prior knowledge of the underlying dynamics. The paper applies different forms of deep learning to problems of increasing complexity with the goal of testing the ability of different deep learning architectures at predicting the character of the dynamics by simply observing a time-ordered set of data. We will demonstrate that a properly trained CNN can correctly classify the types of motion on a given data set. We also demonstrate effective generalisation capabilities by using a CNN trained on one dynamic model to predict the character of the motion governed by another dynamic model. The ability to predict types of motion from observations is then verified on a model problem known as the forced pendulum and on a relevant problem in Celestial Mechanics where observational data can be used to predict the long-term evolution of the system.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Celletti, A., Gales, C., Rodriguez-Fernandez, V., Vasile, M. (2022). Classification of regular and chaotic motions in Hamiltonian systems with deep learning. SCIENTIFIC REPORTS, 12(1) [10.1038/s41598-022-05696-9].
Celletti, A; Gales, C; Rodriguez-Fernandez, V; Vasile, M
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/308242
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact