A porphyrin derivative functionalized with the L-enantiomer of proline amino acid was characterized at the air-pure water interface of the Langmuir trough. The porphyrin derivative was dissolved in dichloromethane solution, spread at the air-subphase interface and investigated by acquiring the surface pressure vs. area per molecule Langmuir curves. It is worth observing that the behavior of the molecules of the porphyrin derivative floating film was substantially influenced by the presence of L-proline amino acid dissolved in the subphase (10(-5) M); on the contrary, the physical chemical features of the floating molecules were only slightly influenced by the D-proline dissolved in the subphase. Such an interesting chirality-driven selection was preserved when the floating film was transferred onto solid supports by means of the Langmuir-Schaefer method, but it did not emerge when a spin-coating technique was used for the layering of the tetrapyrrolic derivatives. The obtained results represent proof of concept for the realization of active molecular layers for chiral discrimination: porphyrin derivatives, due to their intriguing spectroscopic and supramolecular properties, can be functionalized with the chiral molecule that should be detected. Moreover, the results emphasize the crucial role of the deposition technique on the features of the sensing layers.

Giancane, G., Pagano, R., Naitana, M., Magna, G., Stefanelli, M., Monti, D., et al. (2022). Proline enantiomers discrimination by (L)-prolinated porphyrin derivative Langmuir-Schaefer films: proof of concept for chiral sensing applications. CHEMOSENSORS, 10(8) [10.3390/chemosensors10080331].

Proline enantiomers discrimination by (L)-prolinated porphyrin derivative Langmuir-Schaefer films: proof of concept for chiral sensing applications

Naitana, ML;Magna, G;Stefanelli, M;Monti, D;Paolesse, R;
2022

Abstract

A porphyrin derivative functionalized with the L-enantiomer of proline amino acid was characterized at the air-pure water interface of the Langmuir trough. The porphyrin derivative was dissolved in dichloromethane solution, spread at the air-subphase interface and investigated by acquiring the surface pressure vs. area per molecule Langmuir curves. It is worth observing that the behavior of the molecules of the porphyrin derivative floating film was substantially influenced by the presence of L-proline amino acid dissolved in the subphase (10(-5) M); on the contrary, the physical chemical features of the floating molecules were only slightly influenced by the D-proline dissolved in the subphase. Such an interesting chirality-driven selection was preserved when the floating film was transferred onto solid supports by means of the Langmuir-Schaefer method, but it did not emerge when a spin-coating technique was used for the layering of the tetrapyrrolic derivatives. The obtained results represent proof of concept for the realization of active molecular layers for chiral discrimination: porphyrin derivatives, due to their intriguing spectroscopic and supramolecular properties, can be functionalized with the chiral molecule that should be detected. Moreover, the results emphasize the crucial role of the deposition technique on the features of the sensing layers.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore CHIM/07
Settore CHIM/02
English
porphyrins
proline
Langmuir-Schaefer techniques
chirality
supramolecular aggregation
chiral discrimination
Giancane, G., Pagano, R., Naitana, M., Magna, G., Stefanelli, M., Monti, D., et al. (2022). Proline enantiomers discrimination by (L)-prolinated porphyrin derivative Langmuir-Schaefer films: proof of concept for chiral sensing applications. CHEMOSENSORS, 10(8) [10.3390/chemosensors10080331].
Giancane, G; Pagano, R; Naitana, M; Magna, G; Stefanelli, M; Monti, D; Paolesse, R; Bettini, S; Valli, L
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
chemosensors-10-00331-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/306575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact