We consider finite range Gibbs fields and provide a purely combinatorial proof of the exponential tree decay of semi-invariants, supposing that the logarithm of the partition function can be expressed as a sum of suitable local functions of the boundary conditions. This hypothesis holds for completely analytical Gibbs fields; in this context the tree decay of semi-invariants has been proven via analyticity arguments. However the combinatorial proof given here can be applied also to the more complicated case of disordered systems in the so-called Griffiths' phase when analyticity arguments fail.
Bertini, L., Cirillo, E., & Olivieri, E. (2004). A combinatorial proof of tree decay of semi-invariants. JOURNAL OF STATISTICAL PHYSICS, 115(1-2), 395-413.
Tipologia: | Articolo su rivista |
Citazione: | Bertini, L., Cirillo, E., & Olivieri, E. (2004). A combinatorial proof of tree decay of semi-invariants. JOURNAL OF STATISTICAL PHYSICS, 115(1-2), 395-413. |
Lingua: | English |
Settore Scientifico Disciplinare: | Settore MAT/07 - Fisica Matematica |
Revisione (peer review): | Sì, ma tipo non specificato |
Tipo: | Articolo |
Rilevanza: | Rilevanza internazionale |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1023/B:JOSS.0000019813.58778.bf |
Stato di pubblicazione: | Pubblicato |
Data di pubblicazione: | 2004 |
Titolo: | A combinatorial proof of tree decay of semi-invariants |
Autori: | |
Autori: | Bertini, L; Cirillo, ENM; Olivieri, E |
Appare nelle tipologie: | 01 - Articolo su rivista |