A simple model for the localization of the category CLoc(2) of oriented and time-oriented globally hyperbolic conformal Lorentzian 2-manifolds at all Cauchy morphisms is constructed. This provides an equivalent description of 2-dimensional conformal algebraic quantum field theories (AQFTs) satisfying the time-slice axiom in terms of only two algebras, one for the 2-dimensional Minkowski spacetime and one for the flat cylinder, together with a suitable action of two copies of the orientation preserving embeddings of oriented 1-manifolds. The latter result is used to construct adjunctions between the categories of 2-dimensional and chiral conformal AQFTs whose right adjoints formalize and generalize Rehren's chiral observables.

Benini, M., Giorgetti, L., Schenkel, A. (2022). A skeletal model for 2D conformal AQFTs. COMMUNICATIONS IN MATHEMATICAL PHYSICS [10.1007/s00220-022-04428-4].

A skeletal model for 2D conformal AQFTs

Luca Giorgetti;
2022

Abstract

A simple model for the localization of the category CLoc(2) of oriented and time-oriented globally hyperbolic conformal Lorentzian 2-manifolds at all Cauchy morphisms is constructed. This provides an equivalent description of 2-dimensional conformal algebraic quantum field theories (AQFTs) satisfying the time-slice axiom in terms of only two algebras, one for the 2-dimensional Minkowski spacetime and one for the flat cylinder, together with a suitable action of two copies of the orientation preserving embeddings of oriented 1-manifolds. The latter result is used to construct adjunctions between the categories of 2-dimensional and chiral conformal AQFTs whose right adjoints formalize and generalize Rehren's chiral observables.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
English
Benini, M., Giorgetti, L., Schenkel, A. (2022). A skeletal model for 2D conformal AQFTs. COMMUNICATIONS IN MATHEMATICAL PHYSICS [10.1007/s00220-022-04428-4].
Benini, M; Giorgetti, L; Schenkel, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/305074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact