We investigate the notion of real form of complex Lie superalgebras and supergroups, both in the standard and graded version. Our functorial approach allows most naturally to go from the superalgebra to the supergroup and retrieve the real forms as fixed points, as in the ordinary setting. We also introduce a more general notion of compact real form for Lie superalgebras and supergroups, and we prove some existence results for Lie superalgebras that are simple contragredient and their associated connected simply connected supergroups.

Fioresi, R., Gavarini, F. (2023). Real forms of complex Lie superalgebras and supergroups. COMMUNICATIONS IN MATHEMATICAL PHYSICS.

Real forms of complex Lie superalgebras and supergroups

Fabio GAVARINI
2023

Abstract

We investigate the notion of real form of complex Lie superalgebras and supergroups, both in the standard and graded version. Our functorial approach allows most naturally to go from the superalgebra to the supergroup and retrieve the real forms as fixed points, as in the ordinary setting. We also introduce a more general notion of compact real form for Lie superalgebras and supergroups, and we prove some existence results for Lie superalgebras that are simple contragredient and their associated connected simply connected supergroups.
In corso di stampa
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02
Settore MAT/03
English
Con Impact Factor ISI
Complex Lie superalgebras; Complex Lie supergroups
https://arxiv.org/abs/2003.10535
Fioresi, R., Gavarini, F. (2023). Real forms of complex Lie superalgebras and supergroups. COMMUNICATIONS IN MATHEMATICAL PHYSICS.
Fioresi, R; Gavarini, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
graded-CMP-rev - REF.pdf

solo utenti autorizzati

Descrizione: Accepted version of the paper, prior to publication
Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 211.11 kB
Formato Adobe PDF
211.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/304874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact