A free boundary problem for the dynamics of a glasslike binary fluid naturally leads to a singular perturbation problem for a strongly degenerate parabolic partial differential equation in 1D. We present a conjecture for an asymptotic formula for the velocity of the free boundary and prove a weak version of the conjecture. The results are based on the analysis of a family of local travelling wave solutions.

Benzi, R., Bertsch, M., Deangelis, F. (2021). A free boundary problem for binary fluids. INTERFACES AND FREE BOUNDARIES, 23(4), 485-506 [10.4171/IFB/462].

A free boundary problem for binary fluids

Benzi R.;Bertsch M.;
2021-01-01

Abstract

A free boundary problem for the dynamics of a glasslike binary fluid naturally leads to a singular perturbation problem for a strongly degenerate parabolic partial differential equation in 1D. We present a conjecture for an asymptotic formula for the velocity of the free boundary and prove a weak version of the conjecture. The results are based on the analysis of a family of local travelling wave solutions.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Binary fluid
Degenerate parabolic equation
Interface
Singular perturbation
Benzi, R., Bertsch, M., Deangelis, F. (2021). A free boundary problem for binary fluids. INTERFACES AND FREE BOUNDARIES, 23(4), 485-506 [10.4171/IFB/462].
Benzi, R; Bertsch, M; Deangelis, F
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/304338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact