Posidonia oceanicameadows rank among the most important and most productive ecosystems in the Mediterranean basin, due to their ecological role and to the goods and services they provide. estimations of crucial ecological process such as meadows productivity could play a major role in an environmental management perspective and in the assessment of P. oceanicaecosystem services. In this study, a Machine Learning approach, i.e. Random Forest, was aimed at modeling P. oceanica shoot density and rhizome primary production using as predictive variables only environmental factors retrieved from indirect measurements, such as maps. Our predictive models showed a good level of accuracy in modeling both shoot density and rhizome productivity (R 2 = 0.761 and R 2 = 0.736, respectively). Furthermore, as shoot density is an essential parameter in the estimation of P. oceanica productivity, we proposed a cascaded approach aimed at estimating the latter using predicted values of shoot density rather than observed measurements. In spite of the complexity of the problem, the cascaded Random forest performed quite well (R2 = 0.637). While direct measurements will always play a fundamental role, our estimates could support large scale assessment of the expected condition of P. oceanica meadows, providing valuable information about the way this crucial ecosystem works.

Catucci, E., Scardi, M. (2020). Modeling Posidonia oceanica shoot density and rhizome primary production. SCIENTIFIC REPORTS, 10(1) [10.1038/s41598-020-73722-9].

Modeling Posidonia oceanica shoot density and rhizome primary production

Catucci E.
;
Scardi M.
2020-01-01

Abstract

Posidonia oceanicameadows rank among the most important and most productive ecosystems in the Mediterranean basin, due to their ecological role and to the goods and services they provide. estimations of crucial ecological process such as meadows productivity could play a major role in an environmental management perspective and in the assessment of P. oceanicaecosystem services. In this study, a Machine Learning approach, i.e. Random Forest, was aimed at modeling P. oceanica shoot density and rhizome primary production using as predictive variables only environmental factors retrieved from indirect measurements, such as maps. Our predictive models showed a good level of accuracy in modeling both shoot density and rhizome productivity (R 2 = 0.761 and R 2 = 0.736, respectively). Furthermore, as shoot density is an essential parameter in the estimation of P. oceanica productivity, we proposed a cascaded approach aimed at estimating the latter using predicted values of shoot density rather than observed measurements. In spite of the complexity of the problem, the cascaded Random forest performed quite well (R2 = 0.637). While direct measurements will always play a fundamental role, our estimates could support large scale assessment of the expected condition of P. oceanica meadows, providing valuable information about the way this crucial ecosystem works.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/07 - ECOLOGIA
English
Con Impact Factor ISI
Catucci, E., Scardi, M. (2020). Modeling Posidonia oceanica shoot density and rhizome primary production. SCIENTIFIC REPORTS, 10(1) [10.1038/s41598-020-73722-9].
Catucci, E; Scardi, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Catucci&Scardi_2020_SREP.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/303123
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact