The emergy accounting method has been widely applied to terrestrial and marine ecosystems although there is a lack of emergy studies focusing on phytoplankton primary production. Phytoplankton production is a pivotal process since it is intimately coupled with oceanic food webs, energy fluxes, carbon cycle, and Earth’s climate. In this study, we proposed a new methodology to perform a biophysical assessment of the global phytoplankton primary production combining Machine Learning (ML) techniques and an emergy-based accounting model. Firstly, we produced global phytoplankton production estimates using an Artificial Neural Network (ANN) model. Secondly, we assessed the main energy inputs supporting the global phytoplankton production. Finally, we converted these inputs into emergy units and analysed the results from an ecological perspective. Among the energy flows, tides showed the highest maximum emergy contribution to global phytoplankton production highlighting the importance of thise flow in the complex dynamics of marine ecosystems. In addition, an emergy/ production ratio was calculated showing different global patterns in terms of emergy convergence into the primary production process. We believe that the proposed emergy-based assessment of phytoplankton production could be extremely valuable to improve our understanding of this key biological process at global scale adopting a systems perspective. This model can also provide a useful benchmark for future assessments of marine ecosystem services at global scale.

Mattei, F., Buonocore, E., Franzese, P.p., & Scardi, M. (2021). Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models. ECOLOGICAL MODELLING, 451, 109578 [10.1016/j.ecolmodel.2021.109578].

Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models

Scardi M.
2021

Abstract

The emergy accounting method has been widely applied to terrestrial and marine ecosystems although there is a lack of emergy studies focusing on phytoplankton primary production. Phytoplankton production is a pivotal process since it is intimately coupled with oceanic food webs, energy fluxes, carbon cycle, and Earth’s climate. In this study, we proposed a new methodology to perform a biophysical assessment of the global phytoplankton primary production combining Machine Learning (ML) techniques and an emergy-based accounting model. Firstly, we produced global phytoplankton production estimates using an Artificial Neural Network (ANN) model. Secondly, we assessed the main energy inputs supporting the global phytoplankton production. Finally, we converted these inputs into emergy units and analysed the results from an ecological perspective. Among the energy flows, tides showed the highest maximum emergy contribution to global phytoplankton production highlighting the importance of thise flow in the complex dynamics of marine ecosystems. In addition, an emergy/ production ratio was calculated showing different global patterns in terms of emergy convergence into the primary production process. We believe that the proposed emergy-based assessment of phytoplankton production could be extremely valuable to improve our understanding of this key biological process at global scale adopting a systems perspective. This model can also provide a useful benchmark for future assessments of marine ecosystem services at global scale.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/07
English
Con Impact Factor ISI
Mattei, F., Buonocore, E., Franzese, P.p., & Scardi, M. (2021). Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models. ECOLOGICAL MODELLING, 451, 109578 [10.1016/j.ecolmodel.2021.109578].
Mattei, F; Buonocore, E; Franzese, Pp; Scardi, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
phytoplankton_PP_accounting_main.pdf

accesso solo dalla rete interna

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 5.86 MB
Formato Adobe PDF
5.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/303117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact