In this paper, we show that all local martingales with respect to the initially enlarged natural filtration of a vector of multivariate point processes can be weakly represented up to the minimum among the explosion times of the components. We also prove that a strong representation holds if any multivariate point process of the vector has almost surely infinite explosion time and discrete marks space. Then we provide a condition under which the components of the multidimensional local martingale driving the strong representation are pairwise orthogonal.

Calzolari, A., Torti, B. (2022). Martingale representations in progressive enlargement by multivariate point processes. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 25(3) [10.1142/S0219024922500157].

Martingale representations in progressive enlargement by multivariate point processes

Calzolari A.;Torti B.
2022-01-01

Abstract

In this paper, we show that all local martingales with respect to the initially enlarged natural filtration of a vector of multivariate point processes can be weakly represented up to the minimum among the explosion times of the components. We also prove that a strong representation holds if any multivariate point process of the vector has almost surely infinite explosion time and discrete marks space. Then we provide a condition under which the components of the multidimensional local martingale driving the strong representation are pairwise orthogonal.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
Settore MATH-03/B - Probabilità e statistica matematica
English
Con Impact Factor ISI
Calzolari, A., Torti, B. (2022). Martingale representations in progressive enlargement by multivariate point processes. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 25(3) [10.1142/S0219024922500157].
Calzolari, A; Torti, B
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
cal-tor-IJTAF22.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 324.14 kB
Formato Adobe PDF
324.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/302877
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact