Given any half-sided modular inclusion of standard subspaces, we show that the entropy function associated with the decreasing one-parameter family of translated standard subspaces is convex for any given (not necessarily smooth) vector in the underlying Hilbert space. In second quantisation, this infers the convexity of the vacuum relative entropy with respect to the translation parameter of the modular tunnel of von Neumann algebras. This result allows us to study the QNEC inequality for coherent states in a free Quantum Field Theory on a stationary curved spacetime, given a KMS state. To this end, we define wedge regions and appropriate (deformed) subregions. Examples are given by the Schwarzschild spacetime and null translated subregions with respect to the time translation Killing flow. More generally, we define wedge and strip regions on a globally hyperbolic spacetime, so to have non trivial modular inclusions of von Neumann algebras, and make our analysis in this context.

Ciolli, F., Longo, R., Ranallo, A., Ruzzi, G. (2022). Relative entropy and curved spacetimes. JOURNAL OF GEOMETRY AND PHYSICS, 172 [10.1016/j.geomphys.2021.104416].

Relative entropy and curved spacetimes

Ciolli, F;Longo, R;Ruzzi, G
2022-01-01

Abstract

Given any half-sided modular inclusion of standard subspaces, we show that the entropy function associated with the decreasing one-parameter family of translated standard subspaces is convex for any given (not necessarily smooth) vector in the underlying Hilbert space. In second quantisation, this infers the convexity of the vacuum relative entropy with respect to the translation parameter of the modular tunnel of von Neumann algebras. This result allows us to study the QNEC inequality for coherent states in a free Quantum Field Theory on a stationary curved spacetime, given a KMS state. To this end, we define wedge regions and appropriate (deformed) subregions. Examples are given by the Schwarzschild spacetime and null translated subregions with respect to the time translation Killing flow. More generally, we define wedge and strip regions on a globally hyperbolic spacetime, so to have non trivial modular inclusions of von Neumann algebras, and make our analysis in this context.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Local quantum field theory
Operator algebras
Modular theory
QFT on curved spacetimes
Quantum information
Entropy/energy inequalities
Ciolli, F., Longo, R., Ranallo, A., Ruzzi, G. (2022). Relative entropy and curved spacetimes. JOURNAL OF GEOMETRY AND PHYSICS, 172 [10.1016/j.geomphys.2021.104416].
Ciolli, F; Longo, R; Ranallo, A; Ruzzi, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
CLRR.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 434.26 kB
Formato Adobe PDF
434.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/302807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact