Multi-degree Tchebycheffian splines are splines with pieces drawn from extended (complete) Tchebycheff spaces, which may differ from interval to interval, and possibly of different dimensions. These are a natural extension of multi-degree polynomial splines. Under quite mild assumptions, they can be represented in terms of a so-called multi-degree Tchebycheffian B-spline (MDTB-spline) basis; such basis possesses all the characterizing properties of the classical polynomial B-spline basis. We present a practical framework to compute MDTB-splines, and provide an object-oriented implementation in MATLAB. The implementation supports the construction, differentiation, and visualization of MDTB-splines whose pieces belong to Tchebycheff spaces that are null-spaces of constant-coefficient linear differential operators. The construction relies on an extraction operator that maps local Tchebycheffian Bernstein functions to the MDTB-spline basis of interest.
Speleers, H. (2022). Algorithm 1020: computation of multi-degree Tchebycheffian B-splines. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 48(1), 1-31 [10.1145/3478686].
Algorithm 1020: computation of multi-degree Tchebycheffian B-splines
Speleers H.
2022-03-01
Abstract
Multi-degree Tchebycheffian splines are splines with pieces drawn from extended (complete) Tchebycheff spaces, which may differ from interval to interval, and possibly of different dimensions. These are a natural extension of multi-degree polynomial splines. Under quite mild assumptions, they can be represented in terms of a so-called multi-degree Tchebycheffian B-spline (MDTB-spline) basis; such basis possesses all the characterizing properties of the classical polynomial B-spline basis. We present a practical framework to compute MDTB-splines, and provide an object-oriented implementation in MATLAB. The implementation supports the construction, differentiation, and visualization of MDTB-splines whose pieces belong to Tchebycheff spaces that are null-spaces of constant-coefficient linear differential operators. The construction relies on an extraction operator that maps local Tchebycheffian Bernstein functions to the MDTB-spline basis of interest.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.