We report on a rigorous operator-algebraic renormalization group scheme and construct the free field with a continuous action of translations as the scaling limit of Hamiltonian lattice systems using wavelet theory. A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets. Causality follows from Lieb-Robinson bounds for harmonic lattice systems. The scheme is related with the multiscale entanglement renormalization ansatz and augments the semicontinuum limit of quantum systems.

Stottmeister, A., Morinelli, V., Morsella, G., Tanimoto, Y. (2021). Operator-algebraic renormalization and wavelets. PHYSICAL REVIEW LETTERS, 127(23) [10.1103/PhysRevLett.127.230601].

Operator-algebraic renormalization and wavelets

Morinelli V.;Morsella G.;Tanimoto Y.
2021-01-01

Abstract

We report on a rigorous operator-algebraic renormalization group scheme and construct the free field with a continuous action of translations as the scaling limit of Hamiltonian lattice systems using wavelet theory. A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets. Causality follows from Lieb-Robinson bounds for harmonic lattice systems. The scheme is related with the multiscale entanglement renormalization ansatz and augments the semicontinuum limit of quantum systems.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
Settore MAT/07 - FISICA MATEMATICA
English
Stottmeister, A., Morinelli, V., Morsella, G., Tanimoto, Y. (2021). Operator-algebraic renormalization and wavelets. PHYSICAL REVIEW LETTERS, 127(23) [10.1103/PhysRevLett.127.230601].
Stottmeister, A; Morinelli, V; Morsella, G; Tanimoto, Y
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
sl_letter_v3.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 330.05 kB
Formato Adobe PDF
330.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/302748
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact